Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMH vuông tại H và ΔEMK vuông tại K có
MA=ME
\(\widehat{AMH}=\widehat{EMK}\)
Do đó: ΔAMH=ΔEMK
Suy ra: MH=MK
Xét tứ giác AHEK có
M là trung điểm của AE
M là trung điểm của HK
Do đó AHEK là hình bình hành
b: Ta có: AHEK là hình bình hành
nên AH//KE và AH=KE
=>DH//KE và DH=KE
=>DHKE là hình bình hành
mà \(\widehat{DHK}=90^0\)
nên DHKE là hình chữ nhật
Bài 2:
a: Xét tứ giác ABDM có
DM//AB
DM=AB
Do đó: ABDM là hình bình hành
mà AB=AM
nên ABDM là hình thoi
A B C H D M - - - - - - - - E K
mình vẽ hình trên máy o tốt vẽ lại nhé
a) Vì AH=HD ( H đối xứng với D)
Mà AH_|_ BC ( AH đường cao)
=> DH_|_ BC
=> ^AHD=180o
=> A,H,D thẳng hằng
Mà AH=HD ( gt )
Do đó CH là đường trung trực ( mình cm theo cách H thuộc AD)
b)
Mà AH_|_ BC; EK _|_ BC
=> AH//EK (1)
Lại có A đối xứng E qua M => MA=ME
Với AH_|_ BC ; EK_|_BC => AH_|_ MH; EK_|_MK
=> AH/EK=MA/ME
=> AH=EK (2)
Từ (1) và (2) => AKEH là hbh (đpcm) ( hbh có 2 cạnh đối // và = nhau)
c) Vì AH=EK ( AKEH là hbh)
Mà AH=HD
=> HD=EK
Lại có AD//EK
=> HD//EK
Suy ra HKED là hbh
Mà có ^EKH=90o ( K là chân đường _|_)
=> HKED là hcn ( đpcm ) ( hbh có 1 góc _|_)