K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAMH vuông tại H và ΔEMK vuông tại K có

MA=ME

\(\widehat{AMH}=\widehat{EMK}\)

Do đó: ΔAMH=ΔEMK

Suy ra: MH=MK

Xét tứ giác AHEK có 

M là trung điểm của AE

M là trung điểm của HK

Do đó AHEK là hình bình hành

b: Ta có: AHEK là hình bình hành

nên AH//KE và AH=KE

=>DH//KE và DH=KE

=>DHKE là hình bình hành

mà \(\widehat{DHK}=90^0\)

nên DHKE là hình chữ nhật

24 tháng 12 2017

sai đề nha

29 tháng 11 2021

A B C H D M - - - - - - - - E K

 mình vẽ hình trên máy o tốt vẽ lại nhé

a) Vì AH=HD ( H đối xứng với D)

Mà AH_|_ BC ( AH đường cao)

=> DH_|_ BC

=> ^AHD=180o

=> A,H,D thẳng hằng 

Mà AH=HD ( gt )

Do đó CH là đường trung trực ( mình cm theo cách H thuộc AD)

b)

 Mà AH_|_ BC; EK _|_ BC

=> AH//EK (1)

Lại có A đối xứng E qua M => MA=ME

Với AH_|_ BC ; EK_|_BC => AH_|_ MH; EK_|_MK

=> AH/EK=MA/ME

=> AH=EK (2)

Từ (1) và (2) => AKEH là hbh (đpcm) ( hbh có 2 cạnh đối // và = nhau)

c) Vì  AH=EK  ( AKEH là hbh) 

Mà AH=HD

=> HD=EK 

Lại có AD//EK

=> HD//EK 

Suy ra HKED là hbh 

Mà có ^EKH=90o ( K là chân đường _|_)

=> HKED là hcn ( đpcm ) ( hbh có 1 góc _|_)

Bài 2: 

a: Xét tứ giác ABDM có 

DM//AB

DM=AB

Do đó: ABDM là hình bình hành

mà AB=AM

nên ABDM là hình thoi