K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2019

Xét hai tam giác vuông ABH và CAH có:

       \(\widehat{ABH}=\widehat{HAC}\)(cùng phụ với \(\widehat{BAH}\))

Do đó \(\Delta ABH\approx\Delta CAH\)

Suy ra \(\frac{AH}{HB}=\frac{HC}{AH}\Rightarrow AH^2=HB.HC\left(đpcm\right)\)

18 tháng 4 2017

cm \(\Delta ABH\approx\Delta CAH\left(g.g\right)\)

\(\Rightarrow\frac{AH}{CH}=\frac{BH}{HA}\Leftrightarrow AH^2=HB.HC\left(đpcm\right)\)

\(\frac{S_{ABH}}{S_{CAH}}=\frac{\frac{AH.BH}{2}}{\frac{AH.HC}{2}}=\frac{BH}{HC}=\frac{4}{9}\)

ko bít có cho đoạn thẳng nào ko ko cho ko làm đc đâu

25 tháng 2 2020

a) Xét tam giác ABC và tan giác HBA, ta có: 

\(\widehat{BAC}\)=\(\widehat{BHA}\)\(\left(=90^o\right)\)

\(\widehat{B}\)là góc chung

   => Tam giác ABC ~ tam giác HBA (g-g)

   =>\(\frac{AB}{BH}\)=\(\frac{BC}{BA}\) (tỉ số tương ứng)

Hay \(\frac{AB}{BH}\)=\(\frac{BC}{AB}\)

   <=> AB . AB = BC . BH

   <=> \(AB^2\)= BC . BH

b) Xét tam giác ABC và tam giác HAC, ta có:

\(\widehat{BAC}\)=\(\widehat{AHC}\)\(\left(=90^o\right)\)

\(\widehat{C}\)là góc chung

   => Tam giác ABC ~ tam giác HAC (g-g)

Mà tam giác ABC ~ tam giác HBA (cmt)

   => Tam giác HBA ~ tam giác HAC (tính chất)

  => \(\frac{HB}{HA}\)=\(\frac{HA}{HC}\)(tỉ số tương ứng)

Hay \(\frac{HB}{AH}\)=\(\frac{AH}{HC}\)

   <=> AH . AH = HB . HC

   <=> \(AH^2\)= HB . HC

c) Tam giac ABC vuong tai A co:

\(BC^2\)\(AB^2\)+\(AC^2\)(Pytago)

\(BC^2\)\(6^2\)+\(8^2\)

\(BC^2\)= 100

   <=> BC =\(\sqrt{100}\)(BC > 0)

   <=> BC = 10 (cm)

Mat khac: BC = HB + HC

    Tam giac HAC vuong tai H co:

\(AC^2\)=\(AH^2\)+\(HC^2\)(Pytago)

\(8^2\)= HB . HC + \(HC^2\)

64 = HC (HB + HC)

64 = HC . BC

64 = HC . 10

   => HC = 6,4 (cm)

Ma BC = HB + HC

   => 10 = HB + 6,4

   <=> HB = 3,6 (cm)

   Ta co:

\(AH^2\)= HB . HC (cmt)

   =>\(AH^2\)= 3,6 . 6,4

   <=> \(AH^2\)= 23,04

   <=> AH = \(\sqrt{23,04}\)(AH > 0)

   <=> AH = 4,8 (cm)

14 tháng 2 2018

a) Ta có : d // BC 

=> B'C' // BC 

Xét \(\Delta AB'H'\)và \(\Delta ABH\)( B'H' // BH )

Theo hệ quả của định lý Ta-lét 

=> \(\frac{AB'}{AB}=\frac{AH'}{AH}\)(1)

Xét \(\Delta AB'C'\) và \(\Delta ABC\)( B'C' // BC )

Theo hệ quả của định lý Ta-lét

=> \(\frac{AB'}{AB}=\frac{B'C'}{BC}\)(2)

Từ (1) và (2) 

=> \(\frac{AH'}{AH}=\frac{B'C'}{BC}\)( ĐPCM )

b) \(\frac{SAB'C'}{SABC}=\frac{\frac{1}{2}AH'.B'C'}{\frac{1}{2}AH.BC}=\frac{AH'}{AH}.\frac{B'C'}{BC}=\frac{1}{3}.\frac{1}{3}=\frac{1}{9}\)

=> \(SAB'C'=\frac{1}{9}\Rightarrow SAB'C'=\frac{SABC}{9}=\frac{67,5}{9}=7,5\left(cm^2\right)\)

17 tháng 5 2021

A B C 6 8 H

a, Xét tam giác ABC và tam giác HBA ta có : 

^ABC = ^HBA 

^BAC = ^BHA = 900

Vậy tam giác ABC ~ tam giác HBA ( g.g )

b, Xét tam giác HAB và tam giác HCA ta có : 

^AHB = ^CHA = 900

^BAH = ^HCA ( phụ nhau )

Vậy tam giác HAB ~ tam giác HCA ( g.g )

\(\Rightarrow\frac{AH}{CH}=\frac{BH}{AH}\Rightarrow AH^2=BH.CH\)

17 tháng 5 2021

c, Áp dụng định lí Pytago cho tam giác ABC vuông tại A

\(AB^2+AC^2=BC^2\Rightarrow BC^2=36+64\Rightarrow BC=10\)cm 

Vì tam giác ABC ~ tam giác HBA ( cma )

\(\Rightarrow\frac{AC}{AH}=\frac{BC}{AB}\)( tỉ lệ thức )

\(\Rightarrow AH=\frac{AB.AC}{BC}=\frac{6.8}{10}=\frac{48}{10}=\frac{24}{5}\)cm 

22 tháng 3 2018

Bài 1:

B A C D H H

a,Xét ΔBAH và ΔBCA,có:

\(\widehat{B}\) : góc chung

\(\widehat{BHA}=\widehat{BAC}=90^0\)

⇒ ΔBAH ∼ ΔBCA (1) (gg)

\(\dfrac{AB}{BC}=\dfrac{BH}{AB}\)

\(AB^2=BH.BC\)

C/m tương tự:

\(\Delta ACH\sim\Delta BCA\left(gg\right)\left(2\right)\)

\(\Rightarrow\dfrac{AC}{BC}=\dfrac{CH}{AC}\Rightarrow AC^2=CH.BC\)

Từ(1)(2) ⇒ ΔBAH ∼ ΔACH

\(\dfrac{BH}{AH}=\dfrac{AH}{CH}\Rightarrow AH^2=BH.CH\)

b,Vì AD là phân giác của ΔBAC

\(\Rightarrow\dfrac{AB}{AC}=\dfrac{DB}{DC}=\dfrac{1}{2}\)

ΔBAH ∼ ΔACH

\(\Rightarrow\dfrac{AB}{AC}=\dfrac{BH}{AH}=\dfrac{AH}{CH}\)

hay \(\dfrac{1}{2}=\dfrac{BH}{AH}=\dfrac{AH}{CH}\)

\(\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{1}{2}AH\\CH=2AH\end{matrix}\right.\Rightarrow\dfrac{HB}{HC}=\dfrac{\dfrac{1}{2}AH}{2AH}=\dfrac{1}{4}\)

22 tháng 3 2018

AD là phân giác góc A nha

11 tháng 3 2017

1