K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) MB' qua M và song song với (ABC) và (ABD) ⇒ MB′ song song với giao tuyến AB của hai mặt phẳng này. Ta có: MB′ // AB nên MB' và AB xác định một mặt phẳng. Giả sử MB cắt AB' tại I.

Ta có: I ∈ BM ⇒ I ∈ (BCD)

I ∈ AB′ ⇒ I ∈ (ACD)

Nên I ∈ (BCD) ∩ (ACD) = CD

Có: I ∈ CD

Vậy ba đường thẳng AB', BM và CD đồng quy tại I.

b) MB′ // AB Giải sách bài tập Toán 11 | Giải sbt Toán 11

Kẻ MM′ ⊥ CD và BH ⊥ CD

Ta có: MM′ // BH Giải sách bài tập Toán 11 | Giải sbt Toán 11

Mặt khác:

Giải sách bài tập Toán 11 | Giải sbt Toán 11 Giải sách bài tập Toán 11 | Giải sbt Toán 11

Do đó: Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy Giải sách bài tập Toán 11 | Giải sbt Toán 11

c) Tương tự ta có: Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

Phép dời hình và phép đồng dạng trong mặt phẳng

25 tháng 5 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Nhận xét

Gọi (α) là mặt phẳng qua SM và song song với AB.

Ta có BC // (α) và (ABC) là mặt phẳng chứa BC nên (ABC) sẽ cắt (α) theo giao tuyến d đi qua M và song song với BC, d cắt AC tại N.

Ta có (α) chính là mặt phẳng (SMN). Vì M là trung điểm AB nên N là trung điểm AC.

+ Xác định khoảng cách.

Qua N kẻ đường thẳng d’ song song với AB.

Gọi (P) là mặt phẳng đi qua SN và d’.

Ta có: AB // (P).

Khi đó: d(AB, SN) = d(A, (P)).

Dựng AD ⊥ d’, ta có AB // (SDN). Kẻ AH vuông góc với SD, ta có AH ⊥ (SDN) nên:

d(AB, SN) = d(A, (SND)) = AH.

Trong tam giác SAD, ta có Giải sách bài tập Toán 11 | Giải sbt Toán 11

Trong tam giác SAB, ta có S A   =   A B . tan 60 o   =   2 a 3 và AD = MN = BC/2 = a.

Thế vào (1), ta được

Giải sách bài tập Toán 11 | Giải sbt Toán 11

29 tháng 8 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giả sử đã dựng được hai điểm M, N thỏa mãn điều kiện đầu bài. Đường thẳng qua M và song song với AC cắt BC tại D. Khi đó tứ giác MNCD là hình bình hành. Do đó CN = DM. Từ đó suy ra tam giác AMD cân tại M. Do đó Giải sách bài tập Toán 11 | Giải sbt Toán 11 . Suy ra AD là phân giác trong của góc A. Do đó AD dựng được .Ta lại có  N M →   =   C D → , nên có thể xem M là ảnh của N qua phép tịnh tiến theo vectơ  D C → .

Từ đó suy ra cách dựng:

- Dựng đường phân giác trong của góc A. Đường này cắt BC tại D.

- Dựng đường thẳng d là ảnh của đường thẳng AC qua phép tịnh tiến theo vectơ  C D → . d cắt AB tại M.

- Dựng N sao cho  N M →   =   C D → .

Khi đó dễ thấy M, N thỏa mãn điều kiện đầu bài.

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

6 tháng 6 2017

+ Ta có  S A B ⊥ A B C S A C ⊥ A B C S A C ∩ S A B = S A ⇒ S A ⊥ A B C

+ Xác định điểm N, mặt phẳng qua SM và song song với BC cắt AC tại N ⇒  N là trung điểm của AC (MN//BC).

+ Xác định được góc giữa hai mặt phẳng (SBC) và (ABC) là  S B A ^ = 60 °

⇒  SA = AB.tan 60 °  = 2a 3

AC =  A B 2 + B C 2 = 2 a 2

+ Gọi IJ là đoạn vuông góc chung của AB và SN (điểm I thuộc AB và điểm J thuộc SN). Vậy khoảng cách giữa AB và SN là IJ. Ta sẽ biểu thị IJ → qua ba vectơ không cùng phương  A B → ;   A C → ;   A S → .

I J → = I A → + A N → + N J → = m A B → + 1 2 A C → + p N S → = m A B → + 1 2 A C → + p N A → + A S → = m A B → + 1 − p 2 A C → + p A S →

Ta có: I J → ⊥ A B → I J → ⊥ N S → ⇔ I J → . A B → = 0 I J → . N S → = 0  

Thay vào ta tính được m = -6/13; p = 1/13

Do đó: I J → = − 6 13 A B → + 6 13 A C → + 1 13 A S → . Suy ra

169 I J 2 = 36 A C 2 + 36 A B 2 + A S 2 − 72 A B → . A C → .

Thay số vào ta tính được IJ = 2 a 39 13 .

Vậy d(AB; SN) = 2 a 39 13 .

Đáp án D

9 tháng 6 2018

6 tháng 2 2019