Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 a) có vì hai tam giác bằng nhau thì đồng dạng với nhau bởi các cặp cạnh bằng nhau nên tương ứng tỉ lệ với nhau và bằng 1
nên tỉ số đồng dạng cũng =1
b)do tam giác A'B'C'~tam giác ABC theo tỉ số k nên A'B'/AB=k
suy ra AB/A'B'=1/k nên tam giác ABC~tam giác A'B'C' theo tỉ số 1/k
Bài 2 b) do tam giác def đồng dạng với tam giác mnp nên
de/mn=df/mp=ef/np=4/6=2/3
do df=5cm nên mp=7,5cm
do np=9cm nên ef=6cm
Câu 2:
a: Vì ΔABC~ΔDEF theo tỉ số đồng dạng là \(k=\dfrac{1}{2}\)
nên \(\dfrac{AB}{DE}=\dfrac{AC}{DF}=\dfrac{BC}{EF}=k=\dfrac{1}{2}\)
=>\(\dfrac{6}{DE}=\dfrac{8}{DF}=\dfrac{BC}{20}=\dfrac{1}{2}\)
=>\(DE=6\cdot2=12;DF=8\cdot2=16;BC=\dfrac{20}{2}=10\)
Chu vi tam giác ABC là:
10+6+8=24
Chu vi tam giác DEF là:
12+16+20=48
b: Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
=>\(\dfrac{BD}{6}=\dfrac{CD}{8}\)
=>\(\dfrac{BD}{3}=\dfrac{CD}{4}\)
mà BD+CD=BC=10
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)
=>\(BD=3\cdot\dfrac{10}{7}=\dfrac{30}{7};CD=4\cdot\dfrac{10}{7}=\dfrac{40}{7}\)
`Answer:`
Theo giả thiết: `\triangleABC` đồng dạng với `\triangleMNP`
\(\Rightarrow k=\frac{AB}{MN}\) hay \(\frac{2}{5}=\frac{AB}{MN}\)
\(\Rightarrow\frac{MN}{AB}=\frac{5}{2}\)
`->` Chọn C.
Đáp án : C