Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: ΔABC\(\sim\)ΔA'B'C' theo tỉ số đồng dạng \(k_1=\dfrac{2}{3}\)
Vì ΔABC\(\sim\)ΔA'B'C' theo tỉ số đồng dạng \(k_1=\dfrac{2}{3}\)
mà ΔA'B'C' \(\sim\)ΔA''B''C'' theo tỉ số đồng dạng \(k_2=\dfrac{3}{4}\)
nên ΔABC\(\sim\)ΔA''B''C'' theo tỉ số đồng dạng \(k_1\cdot k_2=\dfrac{2}{3}\cdot\dfrac{3}{4}=\dfrac{2}{4}=\dfrac{1}{2}\)
hay ΔA"B"C"\(\sim\)ΔABC theo tỉ số đồng dạng k=2
ΔA1B1C1 đồng dạng với ΔABC theo tỉ số đồng dạng là 3/14
=>A1/AB=3/14
=>AB=14*A1/3
ΔA2B2C2 đồng dạng với ΔABC theo tỉ số đồng dạng là 5/7
=>A2B2/AB=5/7
=>AB=7*A2B2/5
=>14/3*A1B1=7/5*A2B2
=>A1B1/A2B2=7/5:14/3=7/5*3/14=21/70=3/10
=>ΔA1B1C1 đồng dạng với ΔA2B2C2 theo tỉ số là 3/10
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AC^2+AB^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=26^2-24^2=100\)
hay AC=10(cm)
Áp dụng định lí Pytago vào ΔIMN vuông tại I, ta được:
\(IN^2+IM^2=MN^2\)
\(\Leftrightarrow IM^2=MN^2-IN^2=65^2-25^2=3600\)
hay IM=60(cm)
Ta có: \(\dfrac{AC}{IN}=\dfrac{10}{25}=\dfrac{2}{5}\)
\(\dfrac{AB}{IM}=\dfrac{24}{60}=\dfrac{2}{5}\)
\(\dfrac{BC}{MN}=\dfrac{26}{65}=\dfrac{2}{5}\)
Do đó: \(\dfrac{AC}{IN}=\dfrac{AB}{IM}=\dfrac{BC}{MN}\)
Xét ΔABC và ΔIMN có
\(\dfrac{AC}{IN}=\dfrac{AB}{IM}=\dfrac{BC}{MN}\)(cmt)
Do đó: ΔABC\(\sim\)ΔIMN(c-c-c)
* Cách dựng:
- Trên cạnh AB dựng điểm B' sao cho = 2 cm
- Trên cạnh AC dựng điểm C' sao cho AC' = 3cm
- Nối B'C'
Khi đó AB'C' là tam giác cần dựng
* Chứng minh:
Theo cách dựng, ta có:
Suy ra:
Lại có: ∠ A chung
Vậy △ AB'C' đồng dạng △ ABC (c.g.c)
ΔABC~ΔKHG
=>\(\dfrac{AB}{KH}=\dfrac{2}{3}\)
=>\(KH=AB\cdot\dfrac{3}{2}\)
ΔKHG~ΔMNP
=>\(\dfrac{KH}{MN}=\dfrac{1}{3}\)
=>\(\dfrac{AB}{MN}\cdot\dfrac{3}{2}=\dfrac{1}{3}\)
=>\(\dfrac{AB}{MN}=\dfrac{1}{3}:\dfrac{3}{2}=\dfrac{2}{9}\)
=>ΔABC đồng dạng với ΔMNP theo tỉ số \(\dfrac{2}{9}\)