K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 3 2021

Đường thẳng BC đi qua C và vuông góc AH nên nhận (2;-1) là 1 vtpt

Phương trình BC: 

\(2\left(x-0\right)-1\left(y+2\right)=0\Leftrightarrow2x-y-2=0\)

Tọa độ B là nghiệm: \(\left\{{}\begin{matrix}2x-y-2=0\\-x+y=0\end{matrix}\right.\)  \(\Rightarrow B\left(2;2\right)\)

Phương trình đường thẳng d qua C và vuông góc BN có dạng:

\(1\left(x-0\right)+1\left(y+2\right)=0\Leftrightarrow x+y+2=0\)

Gọi D là giao điểm d và BN \(\Rightarrow\left\{{}\begin{matrix}x+y+2=0\\-x+y=0\end{matrix}\right.\) \(\Rightarrow D\left(-1;-1\right)\)

Gọi E là điểm đối xứng với C qua D \(\Rightarrow E\left(-2;0\right)\) đồng thời E thuộc AB

\(\Rightarrow\overrightarrow{EB}=\left(4;2\right)=2\left(2;1\right)\Rightarrow AB\) nhận (1;-2) là 1 vtpt

Phương trình AB: 

\(1\left(x-2\right)-2\left(y-2\right)=0\Leftrightarrow x-2y+2=0\)

A là giao điểm AH và AB nên: \(\left\{{}\begin{matrix}x+2y-1=0\\x-2y+2=0\end{matrix}\right.\)  \(\Rightarrow A\left(-\dfrac{1}{2};\dfrac{3}{4}\right)\)

22 tháng 3 2017

A B C M N E H

goi B(a; b) N( c; d)

\(N\in\left(CN\right)\Rightarrow\)c+8d-7 = 0(1)

N la trung diem AB\(\Rightarrow2c=1+a\left(2\right)\)

2d = -3 +b (3)

B\(\in\left(BM\right)\)\(\Rightarrow\)a+b -2 =0 (4)

tu (1) (2) (3) (4) \(\Rightarrow a=-5;b=7\Rightarrow B\left(-5;7\right)\)

dt (AE) qua vuong goc BM. \(\Rightarrow pt\)(AE):x-y-4 = 0

tọa độ H \(\left\{{}\begin{matrix}x-y-4=0\\x+y-2=0\end{matrix}\right.\Rightarrow H\left(3;-1\right)\);H là trung điểm AE

\(\Rightarrow E\left(5;1\right)\). ​vì ptdt (BE) cung la ptdt qua (BC):

3x+5y-20 =0

tọa độ C là nghiệm hệ \(\left\{{}\begin{matrix}3x+5y-20=0\\x+8y-7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{139}{21}\\\dfrac{1}{21}\end{matrix}\right.\)

\(\Rightarrow C\left(\dfrac{139}{21};\dfrac{1}{21}\right)\)

AH
Akai Haruma
Giáo viên
9 tháng 3 2018

Lời giải:

Gọi giao điểm của $AM$ và $CN$ là $I$

Khi đó $BI$ là đường trung tuyến của tam giác $ABC$ theo tính chất ba đường trung tuyến đồng quy tại một điểm. Theo đó phương trình trung tuyến $BE$ cũng trùng với $BI$

Giao điểm $I$ có tọa độ là nghiệm của HPT:

\(\left\{\begin{matrix} 3x+2y-9=0\\ x-1=0\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} 3x+2y-9=0\\ x=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 3+2y-9=0\\ x=1\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} y=3\\ x=1\end{matrix}\right.\)

Vậy $I(1;3)$

Gọi pt đường thẳng $BI$ là $y=ax+b$

Ta có: \(B(-1;3); I(1;3)\in BI\Rightarrow \left\{\begin{matrix} 3=a+b\\ 3=-a+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=0\\ b=3\end{matrix}\right.\)

Vậy PT đường trung tuyến là: \(y=3\Leftrightarrow y-3=0\)

b)

Vì \(A\in AM\Rightarrow A(a, \frac{9-3a}{2})\)

Vì \(C\in CN\Rightarrow C(1; c)\)

$I(1;3)$ là trọng tâm của tam giác $ABC$ nên:

\(\left\{\begin{matrix} \frac{x_A+x_B+x_C}{3}=x_I\\ \frac{y_A+y_B+y_C}{3}=y_I\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} \frac{a+(-1)+1}{3}=1\\ \frac{\frac{9-3a}{2}+3+c}{3}=3\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} a=3\\ \frac{\frac{9-3a}{2}+3+c}{3}=3\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} a=3\\ \frac{c+3}{3}=3\end{matrix}\right.\Rightarrow a=3; c=6\)

Vậy tọa độ A là: \((3; 0)\), tọa độ C là \((1;6)\)

10 tháng 3 2018

Os. Htt mình chỉ bảo cho bạn cách lập luận có suy luận

(không lên chỉ biết dựa thụ động vào lý thuyết )

G trọng tâm =>giao CN và AM G(1;3)

BE qua G ; tung độ B và G giống nhau

=> BE//ox qua G => pttq BE ; y-3 =0

AH
Akai Haruma
Giáo viên
11 tháng 3 2021

Lời giải:

Vì $A\not\in (d_1); (d_2)$ nên 2 đường trung tuyến này xuất phát từ đỉnh B và đỉnh C.

Gọi đây lần lượt là đường trung tuyến $BM,CN$

Gọi tọa độ $B(b, 2b-1), M(m, 2m-1), C(1,c), N(1,n)$

$M$ là trung điểm $AC$ nên: $m=\frac{3+1}{2}$ và $2m-1=\frac{1+c}{2}$

$\Rightarrow m=2; c=5$

Vậy tọa độ điểm C là $(1,5)$

$N$ là trung điểm $AB$ nên: $1=\frac{3+b}{2}$ 

$\Rightarrow b=-1$. Tọa độ $B(-1, -3)$

 

M(x1;8x1+3); B(1/8y1+3/8;y1); N(x2;14/13x2-9/13); C(13/14y2+9/14; y2)

Theo đề, ta có: (13/14y2+4+9/14)=2x1 và y2-1=16x1+6

=>x1=13/90 và y2=-211/45

=>M(13/90; 187/45); C(-167/45; -211/45)

Theo đề, ta có:

1/8y1+3/8+4=2x2 và y1-1=2(14/13x2-9/13)

=>2x2-1/8y1=35/8 và 28/13x2-y1=-1+18/13=5/13

=>x2=5/2; y1=5

=>N(5/2;2); B(1/2;5)

25 tháng 3 2016

Cách làm sơ khảo:

Gọi các giao điểm của 3 đường đã cho. P là giao điểm của phân giác và trung tuyến
Q là giao điểm của trung tuyến và đường cao. R là giao điểm của phân giác và đường cao. Các điểm này đều biết tọa độ rồi.
Xét tam giác ABQ có QR vuông góc AB, AR vuông góc BQ suy ra R là trực tâm Nên có BR vuông góc AQ.
Gọi tọa độ điểm A(a,3-a). B(b, b+1)
Ta có 2 pt để tính a,b là tích vô hướng của BR.AQ=0 và véc tơ AB song song với véc tơ pháp cảu RQ chính là đường cao qua C
Tìm ra a,b.
Tìm ra điểm A,B
Gọi M là trung điểm của AC
Xét tan giác ABM có phân giác AP vuông góc với BM Suy ra P là trung điểm của BM
Tìm được tọa độ M. Từ đó tính ra tọa độ C

NV
13 tháng 2 2022

Do B là giao điểm BE và BM nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}x+y-2=0\\2x+y-3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\) \(\Rightarrow B\left(1;1\right)\)

Đường thẳng AC vuông góc BE nên nhận (1;-1) là 1 vtpt

Phương trình AC (qua A) có dạng:

\(1\left(x+2\right)-1\left(y-0\right)=0\Leftrightarrow x-y+2=0\)

Do C thuộc AC nên tọa độ có dạng: \(C\left(c;c+2\right)\)

Gọi M là trung điểm AC \(\Rightarrow M\left(\dfrac{c-2}{2};\dfrac{c+2}{2}\right)\)

Do M thuộc BM nên tọa độ thỏa mãn:

\(2\left(\dfrac{c-2}{2}\right)+\dfrac{c+2}{2}-3=0\Rightarrow c=\dfrac{8}{3}\)

\(\Rightarrow C\left(\dfrac{8}{3};\dfrac{14}{3}\right)\)

15 tháng 2 2022

Em cảm ơn