\(\in\)BC. Kẻ DE/AC (E\(\in\)AB). Kẻ DF//A...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét tứ giác AEDF có

AE//DF

AF//DE

Do đó: AEDF là hình bình hành

Suy ra: AD cắt EF tại trung điểm của mỗi đường

=>I là trung điểm của AD

14 tháng 11 2019

a) Xét 2 \(\Delta\) \(ABD\)\(ACD\) có:

\(AB=AC\left(gt\right)\)

\(\widehat{BAD}=\widehat{CAD}\) (vì \(AD\) là tia phân giác của \(\widehat{BAC}\))

Cạnh AD chung

=> \(\Delta ABD=\Delta ACD\left(c-g-c\right)\)

=> \(BD=CD\) (2 cạnh tương ứng).

b) Vì \(\Delta ABC\) cân tại \(A\left(gt\right)\)

=> \(\widehat{ABC}=\widehat{ACB}\) (tính chất tam giác cân).

Hay \(\widehat{EBD}=\widehat{FCD}.\)

Xét 2 \(\Delta\) vuông \(EBD\)\(FCD\) có:

\(\widehat{BED}=\widehat{CFD}=90^0\left(gt\right)\)

\(BD=CD\left(cmt\right)\)

\(\widehat{EBD}=\widehat{FCD}\left(cmt\right)\)

=> \(\Delta EBD=\Delta FCD\) (cạnh huyền - góc nhọn).

=> \(DE=DF\) (2 cạnh tương ứng).

c) Ta có \(\widehat{BAD}=\widehat{CAD}\) (vì \(AD\) là tia phân giác của \(\widehat{BAC}\))

=> \(\widehat{EAD}=\widehat{FAD}.\)

Xét 2 \(\Delta\) \(\)vuông \(ADE\)\(ADF\) có:

\(\widehat{AED}=\widehat{AFD}=90^0\)

Cạnh AD chung

\(\widehat{EAD}=\widehat{FAD}\left(cmt\right)\)

=> \(\Delta ADE=\Delta ADF\) (cạnh huyền - góc nhọn).

=> \(AE=AF\) (2 cạnh tương ứng)

=> \(\Delta AEF\) cân tại \(A.\)

Chúc bạn học tốt!

14 tháng 11 2019

Sao bạn không giúp mình nốt câu d? :((

16 tháng 12 2018

A B C D E F 60 o 80 o

c, Do \(\Delta ADE=\Delta DBF\) ( câu b )

\(\Rightarrow\widehat{AED}=\widehat{DFB}\)

Mà 2 góc này nằm ở vị trí đồng vị

\(\Rightarrow DF//AE\)

Hay \(DF//AC\)

16 tháng 12 2018

ko vẽ hình nha mình chỉ làm câu a thôi 

vì tổng ba góc tam giác bawfng180 độ nên

A +B +C =180

60+80 +C =180

120+C =180

C=180-120

C= 60

16 tháng 12 2018

Cái này mk áp dụng lp 8 nha !

Xét tam giác ABC có : AB=DB(GIẢ THIẾT)

                                    AE=EC(GIẢ THIẾT)

               =) DE là đường trung bình của tam giác ABC 

              =) DE = 1/2 BC

Đến chỗ này mk sửa cho bn phần b nha ! phải là cm tam giác DBF = 1/2 tam giác ABC nha ( mk nghĩ vậy )

=) BF=1/2BC =) FC = ED ( cùng bằng 1/2 BC ) 

Xét tam giác ABC có :

            FC = ED(CMT)

           BF = FC (Vì FC =1/2 AB nên  F là trung điểm của BC )

Nên ta có DF là đường trung bình tam giác ABC =) DF song song vs AC .

Chúc bn học tốt nha !

I ) Cho tam giác ABC vuông tại A có AB=3cm; AC=4cma) Tính độ dài BCb) Kẻ Bm là tia p.g của \(\widehat{ABC}\left(M\in AC\right),MH⊥BC\left(H\in BC\right)\)Chứng minh \(\Delta BMA=\Delta BMH\)c) Chứng minh AM<MCd) Trên tia đối của tia AB lấy N sao cho AN=CH. Chứng minh 3 điểm N,M,H thẳng hàngII ) Cho tam giác ABC có AB=3cm; AC=4cm: BC=5cm. Kẻ đường cao AH \(\left(H\in BC\right)\)1) Chứng tỏ tam giác ABC là tam giác vuông2) Trên cạnh BC...
Đọc tiếp

I ) Cho tam giác ABC vuông tại A có AB=3cm; AC=4cm

a) Tính độ dài BC

b) Kẻ Bm là tia p.g của \(\widehat{ABC}\left(M\in AC\right),MH⊥BC\left(H\in BC\right)\)Chứng minh \(\Delta BMA=\Delta BMH\)

c) Chứng minh AM<MC

d) Trên tia đối của tia AB lấy N sao cho AN=CH. Chứng minh 3 điểm N,M,H thẳng hàng

II ) Cho tam giác ABC có AB=3cm; AC=4cm: BC=5cm. Kẻ đường cao AH \(\left(H\in BC\right)\)

1) Chứng tỏ tam giác ABC là tam giác vuông

2) Trên cạnh BC lấy D sao cho BD=BA, trên cạnh AC lấy E sao AE=AH. Gọi F là giao điểm của DE và AH, Chứng minh

a) \(DE⊥AC\)

b) \(\Delta ACF\)cân

c) \(BC+AH>AC+AB\)

III ) Cho tam giác ABC vuôg tại B có \(\widehat{BAC=60^o}\).Vẽ tia p.g AD của \(\widehat{BAC}\left(D\in BC\right)\)từ D vẽ \(DE⊥AC\left(E\in AC\right)\). Chứng minh rằng

a) \(AB=AE\)

b) \(AD⊥BE\)

c) \(DC>AB\)

                                    GIÚP MÌNK NHA!!!!!!!!!

 

0