Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét 2 \(\Delta\) \(ABD\) và \(ACD\) có:
\(AB=AC\left(gt\right)\)
\(\widehat{BAD}=\widehat{CAD}\) (vì \(AD\) là tia phân giác của \(\widehat{BAC}\))
Cạnh AD chung
=> \(\Delta ABD=\Delta ACD\left(c-g-c\right)\)
=> \(BD=CD\) (2 cạnh tương ứng).
b) Vì \(\Delta ABC\) cân tại \(A\left(gt\right)\)
=> \(\widehat{ABC}=\widehat{ACB}\) (tính chất tam giác cân).
Hay \(\widehat{EBD}=\widehat{FCD}.\)
Xét 2 \(\Delta\) vuông \(EBD\) và \(FCD\) có:
\(\widehat{BED}=\widehat{CFD}=90^0\left(gt\right)\)
\(BD=CD\left(cmt\right)\)
\(\widehat{EBD}=\widehat{FCD}\left(cmt\right)\)
=> \(\Delta EBD=\Delta FCD\) (cạnh huyền - góc nhọn).
=> \(DE=DF\) (2 cạnh tương ứng).
c) Ta có \(\widehat{BAD}=\widehat{CAD}\) (vì \(AD\) là tia phân giác của \(\widehat{BAC}\))
=> \(\widehat{EAD}=\widehat{FAD}.\)
Xét 2 \(\Delta\) \(\)vuông \(ADE\) và \(ADF\) có:
\(\widehat{AED}=\widehat{AFD}=90^0\)
Cạnh AD chung
\(\widehat{EAD}=\widehat{FAD}\left(cmt\right)\)
=> \(\Delta ADE=\Delta ADF\) (cạnh huyền - góc nhọn).
=> \(AE=AF\) (2 cạnh tương ứng)
=> \(\Delta AEF\) cân tại \(A.\)
Chúc bạn học tốt!
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
A B C D E F I 1 2
*Bài dài quá, mk tóm tắt cách làm rồi bạn diễn giải ra nha*
a) Để chứng minh \(\Delta ADB=\Delta ADC\), ta chứng minh theo trường hợp cạnh - góc - cạnh
- Ta thấy có AD là cạnh chung
- \(\widehat{A_1}=\widehat{A_2}\) do phân giác
- AB = AC do \(\Delta ABC\) cân
b) Để chứng minh \(\Delta AED=\Delta AFD\), ta chứng minh theo trường hợp cạnh huyền - góc nhọn của tam giác vuông
- Dễ dàng chứng minh 2 tam giác này vuông lần lượt tại E, F
- AD là cạnh chung
- \(\widehat{A_1}=\widehat{A_2}\)
c) Để chứng minh \(\Delta BDE=\Delta CDF\), ta chứng minh theo trường hợp cạnh huyền - góc nhọn của tam giác vuông
- Dễ thấy ED = DF do \(\Delta AED=\Delta AFD\)
- BD = DC
(do AD là phân giác của \(\Delta ABC\) mà \(\Delta ABC\) cân tại A nên AD cũng là trung tuyến. Suy ra D là trung điểm CD nên BD=DC)
d) Để chứng minh AD là trung trực BC, ta phải chứng minh D là trung điểm BC và AD vuông góc BC
- Đã có D là trung điểm BC do cmt
- AD vuông góc BC do AD là phân giác của \(\Delta ABC\) mà \(\Delta ABC\) cân tại A nên AD cũng là đường cao.
e) Để chứng minh \(I\in AD\) mà I là trung trực EF thì ta chứng minh AD là trung trực EF
Để chứng minh AD là trung trực EF, ta phải có AE = AF, ED = DF (cmt do \(\Delta AED=\Delta AFD\))
a, xet tam giac ABD va tam giac ACD co : AD chung
AB = AC do tam giac ABC can tai A (gt)
goc BAD = goc CAD do AD la phan giac cua goc A (gt)
=> tam giac ABD = tam giac ACD (c - g - c)
=> BD = CD (dn)
xet tam giac BED va tam giac CFD co : goc BED = goc CFD = 90 do ...
goc B = goc C do tam giac ABC can tai A(gt)
=> tam giac BED = tam giac CFD (ch - gn)
=> DE = DF (dn)
b, cm o cau a
c, tam giac ABD = tam giac ACD (cau a)
=> goc ADC = goc ADB (dn)
goc ADC + goc ADB = 180 (kb)
=> goc ADC = 90
co DB = DC (cau a)
=> AD la trung truc cua BC (dn)
Vì DF // AE ﴾DF//AB; E thuộc AB﴿
nên AEF=EFD﴾2 góc so le trong﴿
Hay AEI=IFD﴾ I thuộc EF﴿
Xét tam giác AEI và tam giác DFI có
: AEI=IFD﴾c/m trên﴿
IE=IF﴾I là trung điểm của EF﴿
AIE=DIF ﴾2 gócđối đỉnh﴿
=>tam giác tam giác AEI = tam giác DFI
=> IA=IB﴾ 2 cạnh tương ứng﴿. Mà I nằm giữa A và D => I là trung điểm của AD
NHỚ TK MK NHA
A B C D E F
a)Xét \(\Delta\)vuông AED và \(\Delta\)vuông AFD có
AED = AFD (do AD là phân giác góc A)
AD chung
=> \(\Delta\)AED = \(\Delta\)AFD (cạnh huyền- góc nhọn)
=> DE = DF (2 cạnh tương ứng)
b) Xét \(\Delta\)ABC có:
D là trung điểm BC => AD là đường trung tuyến của tam giác ABC
mà AD là phân giác của A
=> \(\Delta\)ABC cân tại A
=> B = C (đpcm)
Xét tứ giác AEDF có
AE//DF
AF//DE
Do đó: AEDF là hình bình hành
Suy ra: AD cắt EF tại trung điểm của mỗi đường
=>I là trung điểm của AD