K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên

N
24 tháng 1 2022
Tham khảo nha e :))
Cho tam giác ABC vuông cân tại A. Một điểm P nằm trong tam giác biết PA=1,PB=căn 2,PC=2. Tính góc APB câu hỏi 160453 - hoidap247.com

14 tháng 8 2021
Đây là định lí ceva, bạn có thể tham khảo thêm các cách chứng minh khác trên mạng nếu cần.

LN
10 tháng 9
Tứ giác MONB có OM//BC nên là hình thang. Hình thang này có MBN=ONB(=ABC) nên là hình thang.
Chứng minh tương tự ta được các tứ giác ONCP;OMAP cũng là hình thang cân.
Suy ra: MN=OB;NP=OC,MP=OA.
Do đó △MNP là tam giác đều ⇔MN=MP=NP
⇔OB=OC=OA ⇔O là giao điểm của ba đường trung trực của △ABC.
Trong tam giác đều, giao điểm của ba đường trung trực cũng là giao điểm của ba đường cao, ba đường trung tuyển.
Chứng minh tương tự ta được các tứ giác ONCP;OMAP cũng là hình thang cân.
Suy ra: MN=OB;NP=OC,MP=OA.
Do đó △MNP là tam giác đều ⇔MN=MP=NP
⇔OB=OC=OA ⇔O là giao điểm của ba đường trung trực của △ABC.
Trong tam giác đều, giao điểm của ba đường trung trực cũng là giao điểm của ba đường cao, ba đường trung tuyển.
A B C P A' B' C'
Có : \(\frac{BC}{PA'}+\frac{CA}{PB'}+\frac{AB}{PC'}=\frac{BC^2}{PA'.BC}+\frac{CA^2}{PB'.CA}+\frac{AB^2}{PC'.AB}\)
\(=\frac{BC^2}{2S_{BPC}}+\frac{CA^2}{2S_{CPA}}+\frac{AB^2}{2S_{ABP}}\)
Áp dụng bđt \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)được
\(\frac{BC}{PA'}+\frac{CA}{PB'}+\frac{AB}{PC'}\ge\frac{\left(AB+BC+CA\right)^2}{2S_{ABC}}=\frac{P_{ABC}^2}{2S_{ABC}}=const\:\)
Dấu "=" khi 3 cái phân số chứa mẫu là S kia bằng nhau <=> PA' = PB' = PC'
<=> P là tâm đường tròn nội tiếp tam giác ABC