Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAEF có
D là trung điểm cua AE
DG//EF
Do đó: G là trug điểm của AF
=>AG=GF(1)
Xét hình thang BDGC có
E là trung điểm của BD
EF//DG//BC
Do đó: F là trung điểm của GC
=>FG=FC(2)
Từ (1) và (2) suy ra AG=GF=FC
Áp dụng Ta lét trong tam giác ABC (EF//BC),ta có
\(\frac{AE}{AB}=\frac{AF}{AC}=\frac{EF}{BC}\Leftrightarrow\frac{3}{3+6}=\frac{1}{3}=\frac{AF}{AF+5}=\frac{6}{BC}\)
NÊN \(\frac{AF}{AF+5}=\frac{1}{3}\Leftrightarrow3AF=AF+5\Leftrightarrow AF=\frac{5}{2}\)
\(\Rightarrow AC=AF+FC=2,5+5=7,5\)
\(\frac{6}{BC}=\frac{1}{3}\Leftrightarrow BC=18\)
A B C E K H D M
a/
Ta có
\(\widehat{B}=\widehat{C}\) (góc ở đáy tg cân ABC)
EK//AB \(\Rightarrow\widehat{EKC}=\widehat{B}\) (góc đồng vị)
\(\Rightarrow\widehat{EKC}=\widehat{C}\) => tg EKC cân tại E => CE=EK
Mà AD=CE
=> AD=EK (1)
Ta có
EK//AB => EK//AD (2)
Từ (1) và (2) => ADKE là hình bình hành (Tứ giác có 1 cặp cạnh đối // và bằng nhau là hbh)
=> MA=MK; MD=ME (Trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
b/
Ta có \(H\in\left(M;MK\right)\) => MH=MK
Mà MK=MA (cmt)
=> MH=MK=MA
=> tg MHK cân tại M \(\Rightarrow\widehat{MHK}=\widehat{MKH}\)
\(\widehat{HMK}+\widehat{MHK}+\widehat{MKH}=\widehat{HMK}+2\widehat{MHK}=180^o\) (tổng các góc trong của 1 tg = 180 độ)
MH=MK=MA (cmt) => tg MAH cân tại M
\(\Rightarrow\widehat{MAH}=\widehat{MHA}\)
\(\widehat{HMK}=\widehat{MAH}+\widehat{MHA}\) (trong tg góc ngoài bằng tổng 2 góc trong không kề với nó)
\(\Rightarrow\widehat{HMK}=2\widehat{MHA}\)
Từ \(\widehat{HMK}+2\widehat{MHK}=180^o\Rightarrow2\widehat{MHA}+2\widehat{MHK}=180^o\)
\(\Rightarrow\widehat{MHA}+\widehat{MHK}=\widehat{AHK}=90^o\Rightarrow AH\perp BC\)
Xét tg vuông ABH và tg vuông ACH có
AH chung
AB=AC (cạnh bên tg cân ABC)
=> tg AHB = tg AHC (Hai tg vuông có cạnh huyền và cạnh góc vuông bằng nhau)
=> HB=HC
a: Xét ΔAEF có
D là trung điểm của AE
DG//EF
Do đó: G là trung điểm của AF
Suy ra: AG=GF(1)
Xét hình thang BDGC có
E là trung điểm của DB
EF//DG//BC
Do đó: F là trung điểm của GC
Suy ra: GF=FC(2)
Từ (1) và (2) suy ra AG=GF=FC
b: Xét ΔAFE có
D là trung điểm của AE
G là trung điểm của AF
Do đó:DG là đường trung bình của ΔAFE
Suy ra: \(DG=\dfrac{EF}{2}\)
hay EF=10cm
Hình thang DGCB có
E là trung điểm của DB
F là trung điểm của GC
Do đó: EF là đường trung bình của hình thang DGCB
Suy ra: \(EF=\dfrac{DG+BC}{2}\)
\(\Leftrightarrow10=\dfrac{5+BC}{2}\)
hay BC=15(cm)