Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E F
Đề sai rồi nhé \(E\varepsilon AB\)! mới đúng
a, Xét Δ ABC vuông tại A, có :
\(BC^2=AB^2+AC^2\) (định lí Py - ta - go)
=> \(BC^2=3^2+4^2\)
=> \(BC^2=25\)
=> BC = 5 (cm)
b, Xét Δ ABD và Δ EBD, có :
\(\widehat{ABD}=\widehat{EBD}\) (BD là tia phân giác \(\widehat{ABE}\))
\(\widehat{BAD}=\widehat{BED}=90^o\)
BD là cạnh chung
=> Δ ABD = Δ EBD (g.c.g)
=> AB = AE
Xét Δ ABE, có :
AB = AE (cmt)
=> Δ ABE cân tại E
Ta có :
Δ ABE cân tại E
BD là tia phân giác của \(\widehat{ABE}\))
=> BD là đường trung trực của AE
c, Ta có : Δ ABD = Δ EBD (cmt)
=> AD = ED
Trong Δ CED, cạnh huyền DC là cạnh lớn nhất
=> ED < DC
Mà AD = ED (cmt)
=> AD < DC
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E co
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: BA+AF=BF
BE+EC=BC
mà BA=BE; AF=EC
nên BF=BC
=>ΔBFC cân tại B
mà BD là phângíac
nên BD vuông góc CF
c: Xet ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
AF=EC
=>ΔDAF=ΔDEC
=>góc ADF=góc EDC
=>góc EDC+góc FDC=180 độ
=>E,D,F thẳng hàng
a) Xét ΔBHA vuông tại H và ΔBHE vuông tại H có
BH chung
\(\widehat{ABH}=\widehat{EBH}\)(BH là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔBHA=ΔBHE(cạnh góc vuông-góc nhọn kề)
b) Ta có: ΔBHA=ΔBHE(cmt)
nên BA=BE(hai cạnh tương ứng)
Xét ΔBAD và ΔBED có
BA=BE(cmt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔBAD=ΔBED(c-g-c)
Suy ra: \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{BED}=90^0\)
hay DE\(\perp\)BC(đpcm)
GT:tam giác ABC; góc A =90 độ
-BD là tia phân giác của góc ABC
-DE vuông góc BC ,E thuộc BC
-AB=9cm , AC=12cm
KL:BC =?;b)Tam giác DAE cân;c)DA<DC
CHỨNG MINH
a)Xét tam giác ABC vuông tại A (gt)
Ta có AB ^2 + AC^2=BC^2(Định lý Py-ta-go)
=>9^2+12^2=BC^2
81^2+144=255
=>BC^2=225=15^2
=>BC=15cm
b)Xét tam giác BAD và tam giác BED có
Góc BAD = góc BED=90 độ
Góc B1=góc B2(vì BD là tia phân giác của góc ABC)
BA=BE(gt)
=>Tam giác BAD =Tam giác BED (Cạnh huyền-góc nhọn)
=.AD=DE(2 cạnh tương ứng )
=>Tam giác ADE cân tại D (định lý Tam giác cân)
c)Xét tam giác DEC có góc DEC=90 đọ
=>DC là cạnh huyền
=>DC là cạnh lớn nhất
=>DC>DE [1]
Mà DE=DA(cmt)[2]
Từ 1 và 2 suy ra DC>DA
d)Xét BC có :
BA vuông góc DC=>BA là đường cao của Tam giác BDC
DE vuông góc =>DE là đường cao cảu tam giác BDC
CF vuông góc BD=>CF là đường cao của tam giác BDC
BA,DE,CF là đường cao của tam giác BDC
=>Chúng đồng quy
a: \(AC=\sqrt{10^2-5^2}=5\sqrt{3}\left(cm\right)\)
b: ΔDEC vuông tại E
=>DE<DC
c: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
d: Xét ΔDBC có góc DBC=góc DCB
nên ΔDBC cân tại D
e: gọi giao của CF và AB là H
Xét ΔBHC có
BF,CA là đường cao
BF cắt CA tại D
=>D là trực tâm
=>HD vuông góc BC tại E
=>H,D,E thẳng hàng
=>BA,DE,CF là trực tâm
Tam giác ABC đều suy ra gócA=gócB=gócC , AB=AC=BC.....
xét tam giác EBD và tam giác DCF
gócD=gócF=90 độ
BE=CD
gócB=gócC
suy ra 2 tam giác đó = nhau
suy ra BD=FC
(làm theo cách ghép vào 2 tam giác để chứng minh chỗ mấy chấm ở phần trên là bước chuẩn bị tự làm hen viết ra lâu lắm )