Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi M, N, E là giao điểm của AG, BG, CG với BC, CA, AB.
Vì G là trọng tâm của ∆ABC nên
GA = AM; GB = BN; GC = CE (1)
Vì ∆ABC đều nên ba đường trung tuyến ứng với ba cạnh BC, CA, AB bằng nhau
=> AM = BN = CE (2)
Từ (1), (2) => GA = GB = GC
Gọi giao điểm của AG và BC là H
=>AH⊥BC và H là trung điểm của BC
=>BH=a/2
Xét ΔABH vuông tại H có \(AB^2=AH^2+BH^2\)
\(\Leftrightarrow AH^2=a^2-\dfrac{1}{4}a^2=\dfrac{3}{4}a^2\)
\(\Leftrightarrow AH=\dfrac{a\sqrt{3}}{4}\)
\(\Leftrightarrow AG=\dfrac{2}{3}\cdot\dfrac{a\sqrt{3}}{4}=\dfrac{a\sqrt{3}}{6}\)
B C A M N G
Bài làm:
Kẻ trung tuyến AM, CN của tam giác ABC
Vì AB = AC = 5cm => Tam giác ABC cân tại A
=> AM đồng thời là đường cao của tam giác ABC
=> AM _|_ BC
Vì M là trung điểm của BC => BM = MC = BC/2 = 4cm
Áp dụng định lý Pytago ta tính được: \(AM^2=AB^2-BM^2=5^2-4^2=9cm\)
=> AM = 3cm
=> GA = 2/3AM = 2cm ; GM = 1cm
Áp dụng Pytago lần nữa ta tính được:
\(GC^2=BG^2=BM^2+GM^2=4^2+1^2=17\)
=> \(GB=GC=\sqrt{17}cm\)
sao mà khổ vậy
mẹ em là giáo viên toán mà em không hỏi lại chui lên đây hỏi
chị chịu em luôn