K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2016

tam giác ABC đều nên tam giác ABD=ACD => AD vuông góc BC => d là điểm chính giữa cung BC => đpcm

27 tháng 3 2016

ta cần tính BC theo R

BC=AB

mà tam giác ABD vuông có d\góc BAD =30 nên BD =R từ đó tính đc  AB

29 tháng 3 2019

a/ Trọng tâm của tam giác cũng là tâm của đường tròn nội tiếp và ngoại tiếp.
ΔABC đều, AD là đường kính cũng là tia phân giác của góc BAC
⇒ góc BAD = góc DAC ⇒ cung BD = cung DC
⇒ góc BMD = góc DMC ⇒ MD là tia phân giác góc BMC.

b/
ΔACD vuông tại C (do nội tiếp dường tròn đường kính AD = 2R) có góc DAC =1/2 góc BAC = 30º nên là nửa tam giác đều ⇒ AC = R√3, DC = R
Diện tích ΔACD: 1/2AC*CD = 1/2R√3*R = √3R² /2
ΔACD = ΔABD (c.g.c) ⇒ dthtABCD =2dtΔACD = 2*√3R² /2 = √3R²

c/
Gọi I là giao điểm của AM và DB
góc ABD = góc AMD = 90º (2góc nội tiếp đường tròn đk AD)
⇒ AB, DM là hai đường cao của ΔIAD
K là trực tâm của tam giác nên IK ⊥ AD (1)

AC=AB ⇒ cung AC = cung AB ⇒ góc AMC = góc ADB hay góc AMH = góc HDI
góc AMH kề bù với góc HMI nên góc HMI + góc HDI = 180º
⇒ tứ giác IMHD nội tiếp đường tròn đường kính ID.
⇒ góc IMD = góc IHD = 90º
⇒ IH ⊥ AD (2)

Từ (1),(2) ⇒ I, H, K thẳng hàng
hay ba đường thẳng AM, BD, HK đồng quy tại I.

1) Cho đường tròn (O) đường kính AB = 2R. Lấy điểm C di động trên đường tròn (O), gọi I là tâm đường tròn nội tiếp tam giác ABC, vẽ CH vuông góc AB tại H. a) Vẽ CM song song BI ( M thuôc đường thẳng AI). Trên đoạn thẳng AB lấy điểm F sao cho AC = AF. Tính số đo góc CMF.b) Gọi K là tâm đường tròn nội tiếp tam giác CHA, CK cắt AB tại E. Tính giá trị lớn nhất của diện tích tam giác CEF theo R khi...
Đọc tiếp

1) Cho đường tròn (O) đường kính AB = 2R. Lấy điểm C di động trên đường tròn (O), gọi I là tâm đường tròn nội tiếp tam giác ABC, vẽ CH vuông góc AB tại H. 

a) Vẽ CM song song BI ( M thuôc đường thẳng AI). Trên đoạn thẳng AB lấy điểm F sao cho AC = AF. Tính số đo góc CMF.

b) Gọi K là tâm đường tròn nội tiếp tam giác CHA, CK cắt AB tại E. Tính giá trị lớn nhất của diện tích tam giác CEF theo R khi C di động trên (O). 

c) Chứng minh ba đường thẳng MH, CF và BI đồng qui tại một điểm.

2) Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O;R). Gọi M là điểm di động trên cung nhỏ BC. Vẽ AD vuông góc với MB tại D, AE vuông góc với MC tại E. Gọi H là giao điểm của DE và BC. 

a) Chứng minh A, H,E cùng thuộc một đường tròn. Từ đó suy ra DE luôn đi qua một điểm cố định. 

b) Xác định vị trí của M để MB/AD×MC/AE đạt giá trị lớn nhất.

Mọi người giúp em với ạ.

0
CHo nửa đường tròn tâm O đường Kính AB. Vẽ 2 tiếp tuyến Ax và By cùng nửa mặt phẳng vs đường tròn. Lấy M trên nửa đường tròn. Tiếp tuyến tại M cắt Ax và By tại C, D.tìm vị trí của M để AC+BD nhỏ nhấtAM song song với ODgọi I, N là giao điểm của AM với CO, BM với OD. CMR tứ giác MION là hình chữ nhậtAB tiếp xúc với đường tròn đường kính CDIN là đường trung bình tam giác MABgọi I' là...
Đọc tiếp

CHo nửa đường tròn tâm O đường Kính AB. Vẽ 2 tiếp tuyến Ax và By cùng nửa mặt phẳng vs đường tròn. Lấy M trên nửa đường tròn. Tiếp tuyến tại M cắt Ax và By tại C, D.

  1. tìm vị trí của M để AC+BD nhỏ nhất
  2. AM song song với OD
  3. gọi I, N là giao điểm của AM với CO, BM với OD. CMR tứ giác MION là hình chữ nhật
  4. AB tiếp xúc với đường tròn đường kính CD
  5. IN là đường trung bình tam giác MAB
  6. gọi I' là giao điểm của OM với Ax. CMR: I'C.OD = I'O.CO
  7. Tam giác AMB là tam giác vuông
  8. tam giác IAO đồng dạng với tam giác NOB
  9. Gọi R là bán kính của (O), r là bán kính đường tròn nội tiếp tam giác COD.CMR: 2<R/r<3
  10. Gọi K là giao điểm của AD với BC. MK cắt AB tại H. CMR: MH vuông góc với AB
  11. Tìm vị trí của M để tam giác MHO lớn nhất
  12. kéo dài CO cắt DB tại Q. CMR: tam giác DCQ cân tại D
  13. Gọi D', E', F' là giao điểm của CD với AB, BM với Ax, D'E' với By. CMR: A, M, F' thẳng hàng
  14. 2MH2 = MA.MB
  15. CB,AD,IN,MH đồng quy
  16. gọi L là giao điểm của EA và DO. CMR: DEL là tam giác cân
0
15 tháng 4 2018

a) B,A,C,D nằm trên (O) => tg ABDC nt

góc NAB=90( góc nt chắn nửa (O))=> NA là đường cao tam giác BMN

Cmtt MD là đường cao tam giác BMN=> góc AMC=DNC ( cùng phụ góc ABD)

b) MD cắt AN tại C => C là trực tâm tam giác BMN => BC vuông góc MN tại H

c)Phần này mình nghĩ bạn làm được: Cm các tg DCHN,MHCA nt; sau đó cm tam giác MHC đồng dạng MDN, tam giác NHC đồng dạng tam giác NAM=> MC.MD=MH.MN;NC.NA=NH.MN

=> NC.NA+MC.MD=MH.MN+NH.MN=MN^2

8 tháng 4 2020

Chỉ mình đi mọi người