Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
A B C E 50
a) Vì AE // BC nên góc AEB = EBC ( so le trong ) (1)
mà góc ABE = EBC ( BE là tia phân giác của góc ABC ) (2)
nên từ (1) và (2) suy ra góc AEB = ABE
mà 2 góc này là 2 góc đáy
=> ΔABE là tam giác cân
b) Do góc ABE = EBC = 50:2 = 25 độ
nên góc ABE = AEB = 25 độ
Ta có: ABE + AEB + BAE = 180 độ ( tc tổng 3 góc trong 1 tg )
=> 25 + 25 + BAE = 180
=> BAE = 130 độ.
Bài 2:
A B C D E
a) Vì ΔABC cân tại A nên góc ABC = ACB
mà góc ABC + ACB = 180 - BAC
=> góc ABC = 180 - BAC /2 (1)
Do AD = AE nên ΔADE cân tại A
được góc ADE = AED
mà góc ADE + AED = 180 - BAC
=> ADE = 180 - BAC/2 (2)
Từ (1) và (2) suy ra góc ABC = ADE
mà 2 góc này ở vị trí đồng vị => DE//BC
b) Ta có: AD + DB = AB
AE + EC = AC
mà AD = AE ( gt); AB = AC (theo câu a)
=> DB = EC
Xét ΔMBD và ΔMCE có:
DB = CE ( chứng minh trên )
Góc ABC = ACB ( theo câu a )
MB = MC ( suy từ gt)
=> ΔMBD = ΔMCE ( c.g.c )
c) Lại do ΔMBD = ΔMCE (theo câu b)
=> MD = ME (2 cạnh tương ứng)
Xét ΔAMD và ΔAME có:
AD = AE (gt)
AM chung
MD = ME ( cm trên )
=> ΔAMD = ΔAME ( c.c.c )
Chúc bạn học tốtNgân Phùng
Sửa lại bài 3:
x A B C m 1
Giải:
Vì tam giác ABC cân tại A nên \(\widehat{B}=\widehat{C}\)
Xét góc ngoài \(\widehat{xAC}=\widehat{B}+\widehat{C}\)
\(\Rightarrow\frac{1}{2}\widehat{xAC}=\widehat{C}\)
\(\Rightarrow\widehat{A_1}=\widehat{C}\)
Mà 2 góc trên ở vị trí so le trong nên Am // BC
Vậy Am // BC
A B C D E M
CM: a) Do t/giác ABC cân tại A => AB = AC và góc B = góc C
Ta có : AD + DB = AB
AE + EC = AC
và AD = AE(gt); AB = AC(cmt)
=> DB = CE
Xet t/giác BDC và t/giác CEB
có DB = CE (cmt)
góc B = góc C (cmt)
BC : chung
=> t/giác BDC = t/giác CEB (c.g.c)
=> BE = DC (hai cạnh tương ứng)
b) Ta có: t/giác BDC = t/giác CEB (cmt)
=> góc BDC = góc BEC (hai góc tương ứng)
=> góc EBC = góc DCB (hai góc tương ứng)
Mà góc ABE + góc EBC = góc B
góc ACD + góc DCB= góc C
và góc B = góc C (cmt)
=> góc EBA = góc DCA
Xét t/giác BMD và t/giác CME
có góc BDM = góc CEM (cmt)
DB = EC (Cmt)
góc DBM = góc MCE(cmt)
=> t/giác BMD = t/giác CME(g.c.g)
c) Ta có: t/giác BMD = t/giác CME (cmt)
=> BM = CM (hai cạnh tương ứng)
Xét t/giác ABM và t/giác ACM
có AB = AC (cmt)
BM = CM (cmt)
AM : chung
=> t/giác ABM = t/giác ACM (c.c.c)
=> góc BAM = góc CAM (hai góc tương ứng)
=> AM là tia p/giác của góc BAC
CM
a) Vì \(\Delta ABC\)cân tại A \(\Rightarrow\hept{\begin{cases}\widehat{ABC}=\widehat{ACB}\left(tinhchat\right)\\AB=AC\left(dinhnghia\right)\end{cases}}\)
Ta có:\(\hept{\begin{cases}AB=AC\\AD=AE\\AD+DB=AB;AE+EC=AC\end{cases}}\)\(\Rightarrow DB=EC\)
Xét \(\Delta BDC\)và \(\Delta CEB\)có:
\(\hept{\begin{cases}DB=EC\left(cmt\right)\\\widehat{ABC}=\widehat{ACB\left(cmt\right)}\\BCchung\end{cases}}\)\(\Rightarrow\)\(\Delta BDC\)=\(\Delta CEB\) (c-g-c)
\(\hept{\begin{cases}BE=CD\left(2canhtuongung\right)\\\widehat{BDC}=\widehat{BEC}\left(2canhtuongung\right)\\\widehat{B1}=\widehat{C1}\left(2goctuongung\right)\end{cases}}\)
b) Xét \(\Delta MBC\)có \(\widehat{B1}=\widehat{C1}\left(cmt\right)\)
\(\Rightarrow\Delta MBC\)cân tại A
\(\Rightarrow MB=MC\left(tinhchat\right)\)
Ta có: \(\hept{\begin{cases}BE=CD\left(cmt\right)\\MB=MC\left(cmt\right)\\DM+MC=DC;ME+MB=EB\end{cases}}\)\(\Rightarrow DM=ME\)
Xét \(\Delta BMD\)và \(\Delta CME\)có:
\(\hept{\begin{cases}\widehat{M1}=\widehat{M2}\left(2gocdoidinh\right)\\MD=ME\left(cmt\right)\\\widehat{BDC}=\widehat{BEC}\left(cmt\right)\end{cases}}\)\(\Rightarrow\Delta BMD=\Delta CME\)( g-c-g)
c) Bạn làm phần a và b trước nhé mình nghĩ phần c rồi nói
Xét \(\Delta EBD\)và \(\Delta FCE\)có:
EC = DB (Vì \(\hept{\begin{cases}AB=BC\\AD=EB\end{cases}}\))
\(\widehat{EBD}=\widehat{FCE}\)(Cùng là 2 góc ngoài của 1 tam giác đều)
EB = FC (gt)
Suy ra \(\Delta EBD\)\(=\Delta FCE\left(c-g-c\right)\)
\(\Rightarrow DE=EF\)(1)
Chứng minh tương tự: \(\Delta EBD\)\(=\Delta DAF\left(c-g-c\right)\)
\(\Rightarrow DE=FD\)(2)
Từ (1) và (2) suy ra DE = EF = FD
Vậy tam giác DEF đều (đpcm)
do tam giác abc cân tại a
=>góc abc=180-2*góc a
do am=an
=>tam giác amn can taị a
=>góc amn=180-2*góc a
=>góc amn=góc abc(vì cùng bằng
180-2*góc a)
mà hai góc này ở vị trí so le trong
=>mn song song vs ab
xét 2 tam giác abn và acm có
chung góc a
am=an
ab=ac
=>tg abn=tg acm
=>bm=cm(2 cạnh tương ứng)
cau 2
theo đề bài ta có
tg abc đều =>ab=bc=ca
ad=be=cf
=>ab-ad=bc-be=ac-cf
hay bd=ce=af
xét 3 tg ade,bed và cef ta có
góc a=gócb=gócc
ad=be=cf
bd=ce=af
=> tg ade= tg bed= tg cef
=>de=df=ef
=>tg def là tg đều
xét \(\Delta ABD\) và \(\Delta EBD\) có
\(\hept{\begin{cases}\widehat{ABD}=\widehat{EBD}\\AB=BE\\chungBD\end{cases}}\)
=> 2 tam giác = nhau và có AD=DE(ĐPCM)
b)tí nữa có gì giải cho sau nhé, h mik phải ăn cơm rồi