K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
12 tháng 7 2023
a: góc IBC+góc ICB=1/2(góc ABC+góc ACB)
=1/2(180-60)=60 độ
=>góc BIC=120 độ
b: Xét ΔABC có
BD,CE là đường phân giác
BD cắt CE tại I
=>I là tâm đường tròn nội tiếp
=>AI là phân giác của góc BAC
=>góc BAI=góc CAI=60/2=30 độ
c: Xét ΔABC có I là tâm đường tròn nội tiếp
nên I cách đều ba cạnh của tam giác
11 tháng 12 2019
Câu hỏi của cần giải - Toán lớp 7 - Học toán với OnlineMath
J
16 tháng 4 2016
a, xét tam giác abm và tam giác acm có
góc b= góc c
ab=ac
góc bam= góc mac
=>tam giác abm= tam giác acm
b,
16 tháng 4 2016
a) xét tam giác ABM và tam giác ACM có:
AB = AC (tam giác ABC cân tại A)
góc A1 = góc A2 (gt)
AM chung
=> tam giác ABM = tam giác ACM (c.g.c)
câu d) bn dùng bất đẳng thức tam giác
AH là đường cao của tam giác ABC đều
=> AH là đường trung trực của tam giác ABC đều
=> AH _I_ BC tại H là trung điểm của BC
=> BH = HC = \(\frac{BC}{2}=\frac{a}{2}\)
Tam giác HAB vuông tại H có:
\(AB^2=AH^2+BH^2\)
\(AH^2=AB^2-BH^2\)
\(=a^2-\left(\frac{a}{2}\right)^2\)
\(=\frac{4a^2}{4}-\frac{a^2}{4}\)
\(=\frac{3a^2}{4}\)
\(AH=\sqrt{\frac{3a^2}{4}}=\frac{a\sqrt{3}}{2}\left(cm\right)\)
\(S_{ABC}=\frac{AH\times BC}{2}=\frac{a\sqrt{3}}{2}\times a\times\frac{1}{2}=\frac{a^2\sqrt{3}}{4}\left(cm^2\right)\)
cảm ơn