Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn tự vẽ hình nhé!
B1: Xét \(\Delta\)AOD và \(\Delta\)BOC, có:
OA=OB( Vì O là trung điểm của AB)
^AOD=^BOC( 2 góc đối đỉnh)
OD=OC( Vì O là trung điểm của DC)
\(\Rightarrow\)\(\Delta\)AOD=\(\Delta\)BOC (c.g.c)
\(\Rightarrow\)^ADO=^OCB( góc tương ứng)
Mà 2 góc này ở vị trí so le trong
\(\Rightarrow\)AD//BC
Vậy AD//BC
![](https://rs.olm.vn/images/avt/0.png?1311)
đề bài nhầm rồi từ A kéo đến b ko vuông góc với ab nha
![](https://rs.olm.vn/images/avt/0.png?1311)
B C A M N D E
a) Theo gt ta có : AB = AC
=> tam giác ABC cân tại A
=> góc B = góc C *
Xét tam giác ABD và tam giác ACE có :
+ AB = AC(gt)
+ góc B = góc C ( theo * )
+ BD = CE (gt)
=> tam giác ABD = tam giác ACE ( c . g .c )
=> AD = AE ( 2 cạnh tương ứng )
b) Ta có : DM vuông góc với BC, EN vuông góc với BC
=> tam giác MBD và tam giác NCE là tam giác vuông
Xét : tam giác vuông MBD ( góc D = 90\(^o\)) và tam giác vuông NCE ( góc E = 90\(^o\)) có :
+ BD = CE (gt)
+ góc B = góc C ( theo * )
=> tam giác vuông MBD = tam giác vuông NCE ( cạnh góc vuông + góc nhọn )
c) theo CM ý b) ta có : tam giác MBD = tam giác NCE
=> BM = CN (2 cạnh tương ứng )
Mà :MA + BM = AB, AN + CN = AC
Lại có : AB = AC (gt)
=> AM = AN
=> tam giác AMN cân tại A
Nếu : ABC là tam giác đều
=> góc A = 60\(^o\)
=> tam giác AMN là tam giác đều ( tam giác đều là tam giác cân có 1 góc bằng 60\(^o\))
![](https://rs.olm.vn/images/avt/0.png?1311)
A E B C F I M D
a) Xét tam giác BEM và tam giácCFM
có:BM=MC(gt)
góc EBM=gócFCM(tam giác ABC can^)
->T/g BEM=t/g CFM(c.huyền g. nhon)
b)
Xét tam giác vg AEM va t/g vg AFM
có:EM=MF(t/g BEM=t/gAFM)
AM là cạnh chung
->t/g AEM =t/g AFM( c/ huyền -c.góc vg)
->AE=AF(2 cạnh tương ứng)
Xét tam giác AEI và t/g AFI
có:MF=EM(t/g BEM= t/g CFM)
AM là cạnh chung
AF=AE(C/ m trên)
->t/g AEI =t/g AFI(c-c-c)
->EI = IF(2 cạnh tương ứng)
->góc AIE= góc AIF(2 tương ứng)
=>AE là đường trung trực của EF
c(mik ko pt lm)
a và b bạn Hương Sơn
c) Ta có:
\(\Delta ABC\)cân
có AM là đường trung tuyến
=> AM cũng là đường trung trực
=> \(AM\perp BC\)
=> AM = 90 độ
Vì \(\Delta ABC\)cân
=> Góc ABM = góc ACM (1)
mà Góc ABD = góc ACD = 90 độ (2)
Từ (1) và (2) => Góc MBD = góc MCD
Xét \(\Delta DMB\)và \(\Delta DMC\)có :
DM : cạnh chung (1)
Góc MBD = góc MCD ( chứng minh trên ) (2)
BM = MC ( vì AM là đường trung tuyến của tam giác ABC ) (3)
Từ (1) ; (2) và (3) => \(\Delta DMB=\Delta DMC\)(cạnh - góc - cạnh)
=> Góc CMD = góc BMD ( cặp góc tương ứng)
Mà Góc CMD + góc BMD = 180 độ
=> Góc CMD = BMD = 180 : 2 = 90 độ
Vì Góc AMC = 90 độ ( vì AM là đường trung trực)
và góc CMD = 90 độ
=> AMC + CMD = AMD
=> 90 + 90 = AMD
=> AMD = 180 độ
=> Ba điểm A ; M ; D thẳng hàng. ( điều phải chứng minh)
Chúc bạn học tốt !
đầu bài nhầm rồi bạn ơi từ B ko thể kẻ đường vuông góc vs AB và C cũng như vậy bạn xem lại nha