Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B D C F E
Vì DF//AB (gt) . Áp dụng định lý Talet ta có : \(\frac{AF}{AC}=\frac{BD}{BC}\)(1)
Vì DE//AC (gt) . Áp dụng định lý Talet ta có : \(\frac{AE}{AB}=\frac{CD}{BC}\)(2)
Từ (1);(2) \(\Rightarrow\frac{AE}{AB}+\frac{AF}{AC}=\frac{BD}{BC}+\frac{CD}{BC}=\frac{BD+CD}{BC}=\frac{BC}{BC}=1\)(Đpcm)
\(\dfrac{AE}{AB}+\dfrac{AF}{AC}=\dfrac{DC}{BC}+\dfrac{BD}{BC}=1\)
A A B B C C M M D D E E F F
a) Ta có : \(\frac{DF}{AM}=\frac{DC}{MC};\frac{DE}{AM}=\frac{BD}{MB}\)
\(\Rightarrow\frac{DE+DF}{AM}=\frac{BD}{BM}+\frac{DC}{MC}=\frac{BD+DC}{MC}=\frac{BC}{MC}=2\)
Vậy nên DE + DF = 2AM.
b) Theo định lý Ta let ta có:
\(\frac{AE}{AB}=\frac{DM}{BM}=\frac{DM}{MC}=\frac{AF}{AC}\)
\(\Rightarrow\frac{AE}{AF}=\frac{AB}{AC}\)
a) Xét tứ giác AEDF có DE song song và bằng AF nên AEDF là hình bình hành (Dấu hiệu nhận biết).
Vậy thì AE = FD (tính chất hình bình hành)
b) Do AEDF là hình bình hành nên hai đường chéo AD và EF cắt nhau tại trung điểm mỗi đường.
Theo đề bài thì I là trung điểm AD nên I cũng là trung điểm EF.
Vậy E đối xứng với F qua I.
Dễ Thui
Hình vẽ
A B C D E F
Vì DE song song với AC nên
Theo định lí Ta lét
Ta có
\(\frac{AE}{AB}=\frac{CD}{BC}\)
Vì DF song song với AB nên
Theo định lí Ta lét
Ta có: \(\frac{AF}{AC}=\frac{BD}{BC}\)
Suy ra \(\frac{AE}{AB}+\frac{AF}{AC}=\frac{CD}{BC}+\frac{BD}{BC}=\frac{BC}{BC}=1\)
Vậy ...........................
Hình pạn tự vẽ nha!!!
Bài Làm:
Xét \(\Delta ABC\) có \(DE//AC\left(gt\right)\)
\(\Rightarrow\dfrac{AE}{AB}=\dfrac{CD}{CB}\left(1\right)\) ( Theo định lí Ta - lét )
Lại có: \(DF//AB\left(gt\right)\)
\(\Rightarrow\dfrac{AF}{AC}=\dfrac{BD}{CB}\left(2\right)\) ( Theo định lí Ta - lét )
Từ (1) và (2) \(\Rightarrow\) \(\dfrac{AE}{AB}+\dfrac{AF}{AC}=\dfrac{CD}{CB}+\dfrac{BD}{CB}\)
\(\Leftrightarrow\dfrac{AE}{AB}+\dfrac{AF}{AC}=\dfrac{CD+DB}{CB}=\dfrac{CB}{CB}=1\)
Chúc pạn hok tốt!!!