Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C M D
a) Xét tam giác MDC, theo bất đẳng thức trong tam giác ta có:
MC < MD + DC
Vậy thì DB + DC = BM + MD + DC > BM + CM
b) Xét tam giác ABD, áp dụng bất đẳng thức trong tam giác thì AB + AD > BD
Vậy nên AB + AC = AB + AD + DC > BD + DC
Lại theo câu a thì DB + DC > BM + CM
Vậy nên AB + AC > BM + CM
c) Chứng minh tương tự ta có các khẳng đỉnh sau:
AB + BC > MA + MC
BC + AC > MB + MA
Cộng vế với 3 bất đẳng thức ta có:
2(AB + BC + CA) > 2(MA + MB + MC)
\(\Rightarrow MA+MB+MC< AB+BC+CA.\)
Bài giải :
a) Xét tam giác MDC, theo bất đẳng thức trong tam giác ta có:
MC < MD + DC
Vậy thì DB + DC = BM + MD + DC > BM + CM
b) Xét tam giác ABD, áp dụng bất đẳng thức trong tam giác thì AB + AD > BD
Vậy nên AB + AC = AB + AD + DC > BD + DC
Lại theo câu a thì DB + DC > BM + CM
Vậy nên AB + AC > BM + CM
c) Chứng minh tương tự ta có các khẳng đỉnh sau:
AB + BC > MA + MC
BC + AC > MB + MA
Cộng vế với 3 bất đẳng thức ta có:
2(AB + BC + CA) > 2(MA + MB + MC)
⇒MA+MB+MC<AB+BC+CA.
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔADB và ΔADE có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó:ΔADB=ΔADE
b: Ta có: ΔADB=ΔADE
nên AB=AE và BD=ED
=>AD là đường trung trực của BE
c: Xét ΔDBF và ΔDEC có
\(\widehat{DBF}=\widehat{DEC}\)
DB=DE
\(\widehat{BDF}=\widehat{EDC}\)
Do đo: ΔDBF=ΔDEC
d: XétΔABC có AD là phân giác
nên BD/AB=CD/AC
mà AB<AC
nên BD<CD
![](https://rs.olm.vn/images/avt/0.png?1311)
xét \(\Delta ABM\)và \(\Delta ACM\)có:
AB=AC(gt)
AM chung
góc AMC=góc ABM=\(90^0\)
=>\(\Delta ABM=\Delta ACM\)(cạnh huyền-cạnh góc vuông)
=>CM=BM(2 cạnh tương ứng)
=>M là trung điểm của đoạn thẳng BC