\(D\ne C\)).CMR: CA+CB&l...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2018

đe nhu sit a

de sai a

23 tháng 5 2017

sadasdasd

Chọn D

23 tháng 7 2019

A B C M D H

Từ A vẽ AH vuông góc với CM cắt BC tại D.

\(\Delta MAH=\Delta MDH\left(cgc\right)\)(tự chứng minh)

\(=>MA=MD\)(2 cạnh tương ứng)

Theo bất đẳng thức tam giác : MD+MB>BD

nên MA+MB>BD (1)

Ta có : BD=BC+CD 

Mà CA=CD(tự chứng minh)nên BD=CA+CB(2)

Từ (1) và (2) => CA+CB<MA+MB

4 tháng 2 2017

Bài này dễ mà. Bạn tham khảo cách chứng minh định lí ở bài 3 TÍNH CHẤT ĐƯỜNG PHÂN GIÁC CỦA TAM GIÁC ( SGK Toán 8 tập hai - T65) nhé!

15 tháng 8 2019

Kẻ \(AH\perp MC\)cắt BC ở K

Xét hai tam giác vuông AHC và KHC có:

         HC: cạnh chung

         \(\widehat{ACH}=\widehat{KCH}\)(gt)

Suy ra \(\Delta AHC=\Delta KHC\left(cgv-gnk\right)\)

\(\Rightarrow AH=KH\) và AC = KC (hai cạnh tương ứng)

Xét hai tam giác vuông AMH và KMH có:

         MH: cạnh chung

        \(AH=KH\)(cmt)

Suy ra \(\Delta AMH=\Delta KMH\left(2cgv\right)\)

\(\Rightarrow AM=KM\)(hai cạnh tương ứng)

Áo dụng BĐT tam giác vào tam giác BMK, ta được: \(BM+MK>BK\)

\(\Rightarrow BM+AM>BC+CK\)

\(\Rightarrow BM+AM>BC+AC\left(đpcm\right)\)

28 tháng 8 2020

Mình không biết vẽ hình trên đây bạn tự vẽ hình nhé

a, Xét tam giác BDA và tam giác KDC có:       Góc BDA= Góc KDC(đối đỉnh)

                                                                         Góc B= Góc K(90 độ)

=>Tam giác BDA đồng dạng với tam giác KDC(g.g)

=>\(\frac{DB}{DA}=\frac{DK}{DC}\)

b, Xét tam giác DBK và tam giác DAC có:      Góc BDK= Góc DAC(đối đỉnh)

                                                                        \(\frac{DB}{DA}=\frac{DK}{DC}\)

=>Tam giác DBK đồng dạng với tam giác DAC(c.g.c)

c, Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại B, ta có:

BC2=AC2-AB2

BC2=52-32

BC2=16

BC=4(cm)

Vì AD là phân giác 

=>\(\frac{AB}{AC}=\frac{BD}{CD}\)

=>\(\frac{AB}{AC+AB}=\frac{BD}{CD+BD}\)

=>\(\frac{3}{5+3}=\frac{BD}{BC}\)

=>\(\frac{3}{8}=\frac{BD}{4}\)

=>BD=1,5(cm)

=>CD=BC-BD

     CD=4-1,5

     CD=2,5(cm)