Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác abc vuông cân ở a ,m là trung điểm của bc, điểm e nằm giữa m và c.Ke bh,ck vuông với ae (h,k€ae) chứng minh bh=ak.C/m tam giác mbh= tam giác mak.C/m tam giác mhklaf tam giác vuông cân .Vex hình luôn cho mình mình cần gấpkhoang 6 tiênd nữa
a) Xét ∆ vuông ECB và ∆ vuông DBC ta có :
BC chung
ABC = ACB ( ∆ABC cân tại A )
=> ∆ECB = ∆DBC (ch-gn)
=> BD = CE ( tương ứng)
b) Vì ∆ECB = ∆DBC (cmt)
=> EB = DC ( tương ứng)
Xét ∆ vuông EOB và ∆ vuông DOC có :
EOB = DOC ( đối đỉnh)
EB = DC (cmt)
=> ∆EOB = ∆DOC ( cgv-gn)
c) Vì EB + AE = AB
DC + DA = AC
Mà AB = AC ( ∆ABC cân tại A )
EB = DC (cmt)
=> AE = AD
=> ∆AED cân tại A
Vì ∆EOB = ∆DOC (cmt)
=> EBO = DCO ( tương ứng)
Xét ∆ vuông AOB và ∆ vuông AOC ta có :
AE = AD (cmt)
EBO = DCO (cmt)
=> ∆AOB = ∆AOC (cgv-gn)
=> BAO = CAO
Hay AO là phân giác BAC
d) Vì ∆ADE cân tại A (cmt)
Mà AO là phân giác BAC
=> AO là trung trực ED
f) Ta có : ∆ABC cân tại A
Mà AI là trung tuyến
=> AI là phân giác BAC
Mà AO là phân giác BAC
=> A,O,I thẳng hàng
g) Vì ∆ADE cân tại A
=> AED = \(\frac{180°-BAC}{2}\)
Vì ∆ABC cân tại A
=> ABC = \(\frac{180°-BAC}{2}\)
=> AED = ABC
Mà 2 góc này ở vị trí đồng vị
=> ED //BC
bài 1: em tự kẻ hình nha
a, Xét 2 tam giác AMB và CME ta có: góc AMB= góc CME( đối đỉnh), AM=MC(gt),BM=ME(gt)
Vậy 2 tam giác AMB=CME(c-g-c)
b, Ta có: AM=MC, BM=ME nên AECB là hình bình hành
Vậy AE=BC và AE song song với BC
c, Vì AEBC là hình bình hành nên góc BAC= góc ACE( so le trong do AB song song với CE vì AECB là hbh)
Vậy ACE=90 độ hay CE vuông góc với AC
Hình ; tự vẽ
Xét tam giác ADB và tam giác ADE có :
\(\widehat{BAD}=\widehat{EAD}\) ( do AD là tia p/g của \(\widehat{BAC}\))
AB = AE ( gt )
AD là cạnh chung
nên tam giác ADB = tam giác ADE ( c.g.c )
=> DB=DE ( hai cạnh tương ứng )
b) Có : \(\widehat{DBA}+\widehat{DBK}=180^O\)( Hai góc kề bù )
Có : \(\widehat{DEA}+\widehat{DEC}=180^{O^{ }}\)( Hai góc kề bù )
mà \(\widehat{DEA}=\widehat{DBA}\)( Do tam giác ADB = tam giácADE ) ((đã chứng minh ở phần a ))
=> \(\widehat{DBK}=\widehat{DEC}\)
Xét tam giác DBK = tam giác DEC có :
\(\widehat{DBK}=\widehat{DEC}\) ( cm trên )
BD = ED ( do tam giác ADB = tam giác ADE )
\(\widehat{BDK}=\widehat{EDC}\) ( hai góc đối đỉnh )
nên...........
D E F N 1 2 M
a,Tam giác DEN và tam giác DFN có:
DN chung
góc D1=góc D2
DE=DF
=> tam giác DEN=tam giác DFN (c.g.c)
b, Ta có: tam giác DEN=tam giác DFN (cma) => NE=NF
c, Vì DE=DF => tam giác DEF cân tại D, mà DM là tia phân giác
=> DM đồng thời là đường trung tuyến
=> ME=MF
d, Vì tam giác DEF cân tại D, mà DM là đường phân giác và là đường trung tuyến
=> DM đồng thời là đường cao
=> DM vuông góc với EF
e,Vì DM là đường trung tuyến, mà đồng thời là đường vuông góc
=> DM là đường trung trực
f,Đề bài câu f có chút nhầm lẫn bn ơi, phải là tam giác EMN=tam giác FMN
Cách 1: (c.c.c)
Tam giác EMN và tam giác FMN có:
MN chung
EM=MF
NE=NF
=> tam giác EMN=tam giác FMN (c.c.c)
Cách 2: (c.g.c)
Vì DM vuông góc với EF
=> NM -----------------------
=> góc NME = góc NMF =90 độ
Tam giác EMN và tam giác FMN có:
NM chung
góc NME= góc NMF (chứng minh trên)
EM=FM
=> tam giác EMN = tam giác FMN (c.g.c)
a) Xét ∆DEM và ∆DFN ta có
DE = DF (gt)
DM chung
EDM = FDM ( DM là phân giác )
=> ∆ DEM = ∆DFN (c.g.c)(dpcm)
b) Vì ∆DEM = ∆DFN(cmt)
=> EM = MF ( tương ứng)
c) Vì DE = DF (gt)
=>∆ DEF cân tại D
Mà DM là phân giác
=> M là trung điểm EF ( tính chất đường phân giác trong ∆ cân )
=> EM = MF(1)
d) Trong ∆ cân DEF có DM là phân giác và là trung tuyến
=> DM vuông góc với EF(2)
e) Từ (1) và (2)
=> DM là trung trực EF
f) Xét ∆NEM và ∆NFM ta có :
NE = NF
NM chung
EM = MF
=> ∆NEM = ∆NFM (c.c.c)
Xét ∆NEM và ∆NFM ta có :
NE = NF
NMF = NME (DM là trung trực)
EM = MF
=> ∆NEM = ∆NFM (c.g.c)
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm