K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2017

A B C D E F
Mình vẽ hình không được đẹp lắm , bạn thông cảm
a) Xét tam giac ADE và tam giác FEC ta có:

AE=EC ( E là trung điểm AC )

DE= EF ( E la trung điểm DF)

AED= CEF ( đđ )

=> tam giác ADE = tam giác FEC ( c.g.c)

=> AD = CF ( 2 cạnh tương ứng )

mà AD=DB ( D là trung điểm AB)

=> DB=CF

b)Vì tam giác ADE = tam giác FEC(cmt)=> goc EAD = goc ECF ( 2 góc tương ứng )

mÀ góc EAD và góc ECF ở vị trí SLT

nên AD// CF hay AB// CF

Xét tam giác BDC và tam giác DCF ta co:

BD= CF ( cmt)

DC là cạnh chung

goc BDC= goc FCD (cmr)

=> tam giác BDC= tam giác DCF ( c.g.c)

24 tháng 7 2017

Giải

a) Xét ∆ADE và ∆CFE, ta có:

AE = CE (gt)

ˆAED = CEF^ (đối đỉnh)

DE = FE(gt)

Suy ra: ∆ADE = ∆CFE (c.g.c)

⇒⇒ AD = CF (hai cạnh tương ứng)

Mà AD = DB (gt)

Vậy: DB = CF

b) Ta có: ∆ADE = ∆CFE (chứng minh trên)

⇒ˆADE = CFE^ (2 góc tương ứng)

⇒⇒ AD // CF (vì có cặp góc so le trong bằng nhau)

Hay AB // CF

Xét ∆DBC = ∆CDF, ta có:

BD = CF (chứng minh trên)

ˆBDC = ˆFCD (hai góc so le trong vì CF // AB)

DC cạnh chung

Suy ra: ∆BDC = ∆FCD(c. g. c)

c) Ta có: ∆BDC = ∆FCD (chứng minh trên)

Suy ra: ˆC1 = ˆD1 (hai góc tương ứng)

Suy ra: DE // BC (vì có hai góc so le trong bằng nhau)

\(\Delta\)BDC = ∆FCD => BC = DF (hai cạnh tương ứng)

DE = 1 : 2 . DF(gt). Vậy DE = 1 : 2 . BC

20 tháng 12 2017

a/Xét ΔAED va ΔCEF có:

AE=CE(vì E là trung điểm của AC)

∠AED=∠CEF(đối đỉnh)

ED=EF(vì E là trung điểm của DF)

nên: ΔAED=ΔCEF(c-g-c)

do đó: AD=CF

mà AD=BD (vì D là trung điểm của AB)

vậy BD=CF

b/Ta có: ∠EAD=∠ECF(vì ΔAED=ΔCEF)

mà hai góc này ở vị trí so le trong

nên AB//CF

Ta có:AB//CF(cmt)

nên ∠BDC=∠FCD (hai góc so le trong)

Xét: ΔBDC và ΔFCD có:

DC là cạnh chung

∠BDC=∠FCD(cmt)\

DB=CF(cmt)

nên ΔBDC=ΔFCD(c-g-)

c/Ta có: ∠BCD=∠FDC(vì ΔBDC=ΔFCD)

mà hai góc này ở vị trí so le trong

nên DE//BC

Ta có: \(DE=\dfrac{1}{2}DF\)(vì E là trung điểm của DF)

mà DF=CB(vì ΔFCD=ΔBDC)

vậy \(DE=\dfrac{1}{2}CB\)

A B C F E D

23 tháng 1 2020

Bạn tự vẽ hình nhé!

a) + b) Xét \(\Delta ADE\)và \(\Delta CFE\)có: 

\(AE=EC\)( E là trung điểm của AC )

\(DE=EF\)( E là trung điểm của DF )

\(\widehat{AED}=\widehat{CEF}\)( 2 góc đối đỉnh )

\(\Rightarrow\Delta ADE=\Delta CFE\left(c.g.c\right)\)

\(\Rightarrow AD=CF\)( 2 cạnh tương ứng )

mà \(AD=DB\)( D là trung điểm của AB )

nên \(DB=CF\)

c) Ta có: \(\widehat{EAD}=\widehat{ECF}\left(\Delta EDA=\Delta EFC\right)\)

mà 2 góc này nằm ở vị trí so le trong

nên \(AD//CF,AB//CF\)

d) Xét \(\Delta BDC\)và \(\Delta FCD\)có: 

\(BD=FC\left(cmt\right)\)

\(\widehat{BDC}=\widehat{FCD}\)( 2 góc so le trong, \(AD//CF\))

CD là cạnh chung

\(\Rightarrow\Delta BDC=\Delta FCD\left(c.g.c\right)\)

\(\Rightarrow\widehat{BCD}=\widehat{FDC}\)( 2 góc tương ứng )

mà 2 góc này ở vị trí so le trong

\(\Rightarrow DE//BC\)

Chúc bạn học tốt !!!

23 tháng 1 2020

A B C D E F 1 2 1 1

a, Xét \(\Delta ADE\) và \(\Delta CDE\) có:

\(AE=CE\left(E-là-tr.điểm-của-AC\right)\)

\(\widehat{A1}=\widehat{A2}\left(đ.đỉnh\right)\)

\(DE=FE\left(gt\right)\)

\(\Rightarrow\Delta ADE=\Delta CFE\left(c-g-c\right)\left(1\right)\)

b, Từ \(\left(1\right)\Rightarrow AD=CF\left(2c.t.ứ\right)\left(2\right)\)

Mà: \(AD=BD\left(D-là-tr.điểm-của-AB\right)\left(3\right)\)

Từ \(\left(2\right)\left(3\right)\Rightarrow DB=CF\)

c, Từ \(\left(1\right)\Rightarrow\widehat{A1}=\widehat{C1}\)

Mà 2 góc đang ở vị trí so le trong nên:

\(\Rightarrow AB//CF\)

d, Xét \(\Delta ABC\) có:

\(D\) là trung điểm của \(AB\)

\(E\) là trung điểm của \(AC\)

\(\Rightarrow DE//BC\)

6 tháng 3 2020
https://i.imgur.com/oIFvvF2.jpg
6 tháng 3 2020

b) Theo câu a) ta có \(\Delta ADE=\Delta CFE.\)

Hay \(BD\) // \(CF.\)

Xét 2 \(\Delta\) \(BDC\)\(FCD\) có:

\(BD=FC\left(cmt\right)\)

\(\widehat{BDC}=\widehat{FCD}\left(cmt\right)\)

Cạnh DC chung

=> \(\Delta BDC=\Delta FCD\left(c-g-c\right).\)

c) Theo câu b) ta có \(\Delta BDC=\Delta FCD.\)

Hay \(DE\) // \(BC.\)

+ Vì \(\Delta BDC=\Delta FCD\left(cmt\right)\)

=> \(BC=DF\) (2 cạnh tương ứng).

+ Vì \(E\) là trung điểm của \(DF\left(gt\right)\)

=> \(DE=\frac{1}{2}DF\) (tính chất trung điểm).

\(BC=DF\left(cmt\right)\)

=> \(DE=\frac{1}{2}BC\left(đpcm\right).\)

Chúc bạn học tốt!

16 tháng 1 2018

A B C D E F 1 2 a) Xét tam giác EAD và tam giác ECF , có :

EA = EC ( E là trung điểm của AC )

ED = EF ( gt )

góc E1 = góc E2 ( hai góc đối đỉnh )

=> tam giác EAD = tam giác ECF ( c-g-c )

=> DA = FC ( hai cạnh tương ứng ) mà DA = DB ( D là trung điểm của AB ) => DB = CF

Vậy DB = CF

b) Vì góc DAE = góc ECF ( tam giác EAD = tam giác ECF ) mà 2 góc ở vị trí so le trong nên AD // EC mà AD = DB ( gt ) => DB // FC=> góc BDC = góc DCF

Xét tam giác DFC và tam giác CBD , có :

DC : chung

CF = DB ( chứng minh trên )

góc BDC = góc DCF ( chứng minh trên )

=> tam giác DFC và tam giác CBD ( c-g-c )

Vậy tam giác DFC và tam giác CBD ( c-g-c )

c) Vì tam giác DFC và tam giác CBD ( chứng minh trên ) => góc FDC = góc DCB ( hai góc tương ứng ) mà hai góc ở vị trí so le trong nên DE // BC ( dấu hiệu nhận biết hai đường thẳng song song )

Vậy DE // BC

Vì DE + EF = DF ; E là trung điểm của DF mà DF = BC ( tam giác DFC và tam giác CBD ) => DE = \(\dfrac{1}{2}\) DF hay DE = \(\dfrac{1}{2}\) BC

Vậy DE = \(\dfrac{1}{2}\) BC

*** Bn ơi câu c phải là DE = \(\dfrac{1}{2}\) BC và dề bài : Vẽ điểm F sao cho E là trung điểm của DF nha ***

16 tháng 1 2018

câu b) sửa lại là BDC nha :))ngaingung

14 tháng 12 2018

Xét tam giác AED và tam giác CEF có:

AE = CE (E là trung điểm của AC)

AED = CEF (2 góc đối đỉnh)

ED = EF (E là trung điểm của DF)

=> Tam giác AED = Tam giác CEF (c.g.c)

=> AD = CF (2 cạnh tương ứng) mà AD = DB (D là trung điểm của AB) => DB = CF

ADE = CFE (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => AD // CF

Xét tam giác BDC và tam giác FCD có:

BD = FC (chứng minh trên)

BDC = FCD (2 góc so le trong, AD // CF)

CD chung

=> Tam giác BDC = Tam giác FCD 

=> BCD = FDC (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => DE // BC

BC = FD (2 cạnh tương ứng) mà DE = 12FD (E là trung điểm của FD) => DE = 1/2BC

14 tháng 12 2018

a/Xét ΔAED va ΔCEF có:

AE=CE(vì E là trung điểm của AC)

∠AED=∠CEF(đối đỉnh)

ED=EF(vì E là trung điểm của DF)

nên: ΔAED=ΔCEF

do đó: AD=CF

mà AD=BD (vì D là trung điểm của AB)

vậy BD=CF

b/Ta có: ∠EAD=∠ECF(vì ΔAED=ΔCEF)

mà hai góc này ở vị trí so le trong

nên AB//CF

Ta có:AB//CF(cmt)

nên ∠BDC=∠FCD (hai góc so le trong)

Xét: ΔBDC và ΔFCD có:

DC là cạnh chung

∠BDC=∠FCD(cmt)\

DB=CF(cmt)

nên ΔBDC=ΔFCD(c-g-)

c/Ta có: ∠BCD=∠FDC(vì ΔBDC=ΔFCD)

mà hai góc này ở vị trí so le trong

nên DE//BC

Ta có: DE=1/2DF=12DF(vì E là trung điểm của DF)

mà DF=CB(vì ΔFCD=ΔBDC)

vậy DE=1/2CB

5 tháng 1 2017

hình, bn tự vẽ nhé!

Giải:

a/ Xét t/g ADE và t/g CFE có:

AE = CE (gt)

\(\widehat{AED}=\widehat{CEF}\) (ddoois ddinhr)

DE = FE (gt)

=> t/g ADE = t/g CFE (c.g.c)

=> AD = CF

mà DB = AD (gt)

=> DB = CF (đpcm)

b/ Ta có: t/g ADE = t/g CFE (ý a)

=> \(\widehat{DAE}=\widehat{FCE}\) (2 góc tương ứng)

mà 2 góc này so le trong

=> AB // CF

=> \(\widehat{BDC}=\widehat{FCD}\) (so le trong)

\(\widehat{BCD}=\widehat{FDC}\) (so le trong)

Xét t/g BDC và t/g FCD có:

\(\widehat{BDC}=\widehat{FCD}\left(cmt\right)\)

CD : cạnh chung

\(\widehat{BCD}=\widehat{FDC}\left(cmt\right)\)

=> t/g BDC = t/g FCD (g.c.g)(đpcm)

c/ Ta có: \(\widehat{BCD}=\widehat{FDC}\) (đã cm)

mà 2 góc này ở vị trí so le trong

=> DE // BC (đpcm)

Vì t/g BDC = t/g FCD (ý b)

=> BC = FD

mà DE = EF = \(\frac{1}{2}\) FD

=> DE = EF = \(\frac{1}{2}BC\)

=> DE = \(\frac{1}{2}BC\left(đpcm\right)\)

5 tháng 1 2017

Bạn vào trang web /hoi-dap/question/158621.html

6 tháng 7 2017

B,D,C là 3 điểm thẳng hàng mà tam giác sao đc đề sai r kìa -.- DE giao BC song song sao đc ?

5 tháng 11 2018

câu c bn tự lm nha

xét tam giác AED và tam giác CEF ta có

AE=CE ( giả thiết)

DE=EF ( gt )

góc AED = góc FEC ( đối đỉnh)

suy ra tam giác AED=tam giác CEF( c-g-c)

=> AD =CF

=> ra BD = CF( cùng bằng AD)

b) ta có tam giác AED = tam giác CEF ( cmt)

=> góc ADE = góc EFC mà hai góc này nằm ở vị trí sole tròn nên AB song song với CF => góc BDC = góc FCD

xét tam giác BDC và tam giác FCD ta có

CD cạnh chung 

DB=CF ( theo câu a)

góc BDC=góc FCD

=>> tam giác BDC = tam giác FCD ( c-g-c)

đúng 99 % đs hình bn tự vẽ nha với câu c mình ko biết lm ahihi