Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có hình vẽ:
A B C D M
a/ Xét tam giác AMB và tam giác CMD có:
BM = MC (GT)
góc AMB = góc CMD (đối đỉnh)
AM = MD (GT)
=> tam giác AMB = tam giác CMD (c.g.c)
=> AB = DC (2 cạnh tương ứng)
b/ Ta có: tam giác AMB = tam giác CMD (câu a)
=> góc BAM = góc MDC (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AB // DC (đpcm)
c/ Xét tam giác ABM và tam giác ACM có:
AB = AC (GT)
BM = MC (GT)
AM: chung
=> tam giác ABM = tam giác ACM (c.c.c)
=> góc AMB = góc AMC (2 góc tương ứng) (*)
Mà góc AMB = góc CMD (đối đỉnh) (**)
Từ (*),(**) = >góc AMC = góc CMD (1)
Ta có: AM = MD (GT) (2)
CM: cạnh chung (3)
Từ (1),(2),(3) => tam giác AMC = tam giác DMC
=> góc ACM = góc DCM (2 góc tương ứng)
=> CM là phân giác góc ACD
hay CB là phân giác góc ACD
A B C D M 1 2
a) Xét ΔABM và ΔDCM có:
AM=DM(gt)
\(\widehat{AMB}=\widehat{DMC}\left(đđ\right)\)
BM=CM(gt)
=> ΔABM=ΔDCM(c.g.c)
=> AB=DC
b) VÌ: ΔABM=ΔDCM(cmt)
=> \(\widehat{ABM}=\widehat{C_2}\) .Mà hai góc này ở vị trí sole trong
=> AB//DC
c)Vì: ΔABC có AB=AC(gt)
=> ΔABC cân tại A
=> \(\widehat{ABM}=\widehat{C_1}\)
Mà: \(\widehat{ABM}=\widehat{C_2}\left(cmt\right)\)
=> \(\widehat{C_1}=\widehat{C_2}\)
=> CB là tia phân giác của góc ACD

(Tự vẽ hình nhé!)
a) Xét \(\Delta ABM\)và \(\Delta DCM\)có:
\(\widehat{M_1}=\widehat{M_2}\)(Đối đỉnh)
\(BM=CM\left(gt\right)\)
\(AM=DM\left(gt\right)\)
\(\Rightarrow\Delta ABM=\Delta DCM\left(c.g.c\right)\)
b) Ta có: M là trung điểm BC
M là trung điểm AD
\(\Rightarrow\)Tứ giác ABCD là hình bình hành
\(\Rightarrow AB\)// \(CD\)
c) Xét \(\Delta ABC\)có: \(AB=AC\Rightarrow\Delta ABC\)cân tại \(A\)
\(\Rightarrow AM\)vừa là đường trung tuyến vừa là đường cao
\(\Rightarrow AM⊥BC\)
d) Câu này chưa hiểu => chưa giải

xin lỗi mình chỉ biết làm phần b thôi
b)Vì tg ABC =TG DCM nên ABM^ =DCM^ (2 góc tương ứng)
Mà ABM^ & DCM^ ở vị trí so le trong nên AB//DC
vậy....
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ
a)Xét tam giác AMB và tam giác DMC có:
BM=CM(M là trung điểm của BC)
góc AMB=góc DMC(2 góc đối đỉnh)
AM=DM(GT)
=>tam giác ABM= tam giác DMC(c.g.c)
=>AB=DC(2 cạnh tương ứng)
b)Vì tam giác AMB= tam giác DMC(cmt)
=>góc ABM = góc DCM
mà 2 góc này ở vị trí so le trong
=>AB//DC
c)Xét tam giác ABM và tam giác ACM có:
AB=AC(tam giác ABC cân tại A)
AM là cạnh chung
BM=CM(M là trung điểm của cạnh BC)
=>tam giác ABM=tam giác ACM(c.c.c)
=>góc ACM=góc ABM(2 góc tương ứng)
mà góc ABM=gócDCM(cmt)
=>góc ACM= góc DCM
=>CB là tia phân giác của góc ACD

Bạn tự vẽ hình nhé.
a, Xét tam giác DBC và DAM có
Góc ADM = Góc BDC ( đối đỉnh )
DA = DB (gt)
DC = DM ( gt )
Suy ra tam giác DBC = tam giác DAM
=> BC = AM
Chứng minh tương tự với tam giác EAN và ECB ta có AN = BC
Vậy AM = AN ( = BC)
b. Từ tam giác DAM = tam giác DBC theo cmt
=> Góc DAM = Góc DBC (1)
Từ tam giác EAN = tam giác ECB theo cmt
=> Góc EAN = Góc ECB (2)
Cộng vế với vế của (1) và (2) ta được:
\(\widehat{DAM}+\widehat{EAN}=\widehat{DBC}+\widehat{ECB}\\
\Leftrightarrow\widehat{DAM}+\widehat{EAN}+\widehat{BAC}=\widehat{DBC}+\widehat{ECB+}\widehat{BAC}=180^0\)
Vậy M, A, N thẳng hàng
ban co the ve hinh cho minh dc hk minh ve roi nhung van so sai ! hihi
A C M B D
a) không cần chứng minh cũng biết là AB=DC , bạn ghi sai đề rùi, đáng lẽ ra là CM tam giác ABM= tam giác CDM
NHƯNG MÌNH ĐÃ CHỨNG MINH Ở DƯỚI LUÔN ZỒI, BN XEM NHA !
b) Vì M là trung điểm của BC
=> BM=CM
Xét tam giác ABM và tam giác CDM có :
BM=CM
\(\widehat{AMB}=\widehat{CMD}\)(2 góc đối đỉnh)
AM=MD
=> \(\Delta ABM=\Delta CDM\left(c.g.c\right)\)
=>\(\widehat{ABC}=\widehat{ADC}\)(2 góc tương ứng )
Mà \(\widehat{ABC}\) và \(\widehat{ADC}\)là 2 góc so le trong
\(\Rightarrow AB//DC\left(đpcm\right)\)
c)Xét \(\Delta AMB\)và \(\Delta ACM\)có:
AB = AC (giả thiết)
AM là cạnh chung
BM = CM
\(\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\)
\(\Rightarrow\Delta AMC=\Delta CDM\left(=\Delta AMB\right)\)
\(\Rightarrow\widehat{ACM}=\widehat{MCD}\)(2 góc tương ứng)
Mà tia MC nằm giữa tia AC và tia CD
=> CB là tia phân giác của \(\widehat{ACD}\)\(\left(đpcm\right)\)