Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C O H D E F P Q M N
a) Dễ có tứ giác BCEF nội tiếp đường tròn (BC). Suy ra ^BPQ = ^AFE = ^ECB = ^BCQ
Vậy tứ giác BPCQ nội tiếp (Quỹ tích cung chứa góc) (đpcm).
b) Có ^BPQ = ^BCQ = ^BFD (cmt) hay ^DPF = ^DFP. Vậy \(\Delta\)DPF cân tại D (đpcm).
c) Dễ thấy NE là tiếp tuyến của (AEF), suy ra ^NEF = ^EAF = ^BDF = 1800 - ^FDN
Suy ra tứ giác DFEN nội tiếp. Khi đó \(\Delta\)MFD ~ \(\Delta\)MNE (g.g). Vậy MF.ME = MD.MN (đpcm).
d) Ta thấy ^FDB = ^EDC (=^BAC); ^DNE = ^DFM (Vì tứ giác DFEN nội tiếp)
Do đó \(\Delta\)DEN ~ \(\Delta\)DMF (g.g). Từ đây DN.DM = DE.DF (1)
Từ câu b, ta có \(\Delta\)DPF cân tại D (DF = DP). Tương tự DE= DQ (2)
Từ (1) và (2) suy ra DN.DM = DP.DQ dẫn đến \(\Delta\)DPM ~ \(\Delta\)DNQ (c.g.c)
Suy ra 4 điểm M,P,Q,N cùng thuộc một đường tròn hay (MPQ) đi qua N cố định (đpcm).
c. Bạn C/m Tam Giác HOF- Tam giác KOA đồng dạng
=>OH/OK=OF/OA
=>OK.OF= OH.OA=OB^2=OD^2
=>OK/OD=OD/OF
=> Tam giác ODK và Tam giác OFD đồng dạng
=>Tam giác ODF vuông tại D
=>FD la tiếp tuyến của (O) (đpcm)
d. EI=BI=IA (IE la trung tuyến của tam giác vuông ABE)
=>góc IEB=góc IBE; Cmtt ta có góc FDE = góc FED
mà (góc IBE+ góc FDE)= 90 nên (góc IEB+góc FED)=90
=> F,E,I thẳng hàng
Ta có BINF là hình bình hành nên FN=BI=IA => IANF la hbh
=> AN=IF=IE+EF=IB+DF=FN+DF=DN (đpcm)
\(\text{Chứng minh rằng: }\dfrac{2}{AK}=\dfrac{1}{AD}+\dfrac{1}{AE}\)
➤➤➤ Chứng minh:
➤ Vì H là trung điểm của ED (gt) nên DE = 2HD
Ta có: \(\dfrac{1}{AD}+\dfrac{1}{AE}=\dfrac{AE+AD}{AD\times AE}=\dfrac{\left(AD+DE\right)+AD}{AD\times AE}=\dfrac{2\left(AD+DH\right)}{AD\times AE}=\dfrac{2AH}{AD\times AE}\) (1)
➤ Xét ΔABD và ΔAEB có:
\(\widehat{A_1}\text{ chung}\)
\(\widehat{B_1}=\widehat{E_1}\left(\text{cùng chắn }\stackrel\frown{BD}\right)\)
⇒ ΔABD và ΔAEB (g - g)
\(\Rightarrow\dfrac{AB}{AE}=\dfrac{AD}{AB}\)
\(\Rightarrow AB^2=AD\times AE\) (2)
➤ Vì H là trung điểm của ED (gt) OH ⊥ ED
⇒ O, H, A, B, C cùng thuộc đường tròn đường kính OA
\(\Rightarrow\widehat{H_1}=\widehat{C_1}\)
Mặt khác: 2 tiếp tuyến AB và AC của (O) cắt nhau tại A ⇒ AB = AC
⇒ ΔABC cân tại A
\(\Rightarrow\widehat{C_1}=\widehat{ABC}\)
Suy ra: \(\widehat{H_1}=\widehat{ABK}\)
⇒ ΔABK và ΔAHB (g - g)
\(\Rightarrow\dfrac{AB}{AH}=\dfrac{AK}{AB}\)
\(\Rightarrow AB^2=AH\times AK\) (3)
➤➤ Từ (1), (2), (3) \(\Rightarrow\dfrac{1}{AD}+\dfrac{1}{AE}=\dfrac{2AH}{AH\times AK}=\dfrac{2}{AK}\left(đpcm\right)\)