\(\widehat{B}=2\widehat{C}\) . Tia phân giác góc B cắt AC ở D . Trên...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2020

Vì BD là phân giác góc B=>ABD=1/2 góc B                                                            Vì B=2C=>ACB=1/2 góc B                                                                                          =>ABD=ACB                                                                                                  Vì ABD và ABE là 2 góc kề bù=>.....+.....=180 độ                                                    Vì ACB và ACK là 2 góc kề bù=>.....+.....=180 độ                                                     =>ACK=ABE                                                                                                             Xét tam giác ABE với tam giác ACK (c.g.c)                                                               =>AE=AK(đpcm)

23 tháng 7 2018

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Giải sách bài tập Toán 7 | Giải sbt Toán 7

24 tháng 5 2017


\(a.\) Ta có: \(\widehat{B}=2\widehat{C}\)suy ra \(\widehat{C}=\frac{\widehat{B}}{2}\)                                                    \(\left(1\right)\)
Vì \(BD\)là tia phân giác của \(\widehat{B}\)suy ra \(\widehat{ABD}=\widehat{DBC}=\frac{\widehat{B}}{2}\)                \(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)suy ra \(\widehat{ABD}=\widehat{DBC}=\widehat{C}\)
- Xét \(\Delta ABD\)có     \(\widehat{ADB}+\widehat{DBA}+\widehat{BAD}=180^0\)(đ/lý tồng 3 góc trong cùng 1 tam giác)
                         \(\Rightarrow\)\(\widehat{ADB}+\widehat{BAD}=180^0-\widehat{DBA}\)
- Xét \(\Delta ABC\)có       \(\widehat{BAC}+\widehat{ACB}+\widehat{CBA}=180^0\)
                         \(\Rightarrow\) \(\widehat{BAC}+\widehat{CBA}=180^0-\widehat{ACB}\)
        mà  \(\widehat{ACB}=\widehat{ABD}\)(cmt)     suy ra  \(\widehat{BAC}+\widehat{CBA}=\widehat{ADB}+\widehat{BAD}\)

- Xet  \(\Delta ABD\)có  \(\widehat{ABE}\)là góc ngoài tại đỉnh \(B\)
                     suy ra  \(\widehat{ABE}=\widehat{ADB}+\widehat{BAD}\) 
- Xet  \(\Delta ABC\)có  \(\widehat{ACK}\)là góc ngoài tại đỉnh \(C\)
                     suy ra  \(\widehat{ACK}=\widehat{ABC}+\widehat{BAC}\) 
    mà    \(\widehat{BAC}+\widehat{CBA}=\widehat{ADB}+\widehat{BAD}\)        \(\Rightarrow\)đpcm

24 tháng 5 2017

\(b.\)  Xét  \(\Delta AEB\)và  \(\Delta KCA\) có:     \(AB=CK\)         ( gt )
                                                             \(\widehat{ABE}=\widehat{ACK}\)      ( cmt )
                                                                \(EB=AC\)          ( gt )
                   Do đó  \(\Delta AEB\)\(=\)\(\Delta KCA\) (c.g.c)

7 tháng 9 2017

Cách Làm:

(tự vẽ hình)

có ab + be = ae và ac + ck = ak

mà ab = ck và be = ac

=> đpcm

20 tháng 11 2017

Bạn tự vẽ hình nha!

Có ab+be=ae và ac+ck=ak

Mà ab=ck và be=ac

=>đpcm