Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\Delta BAM=\Delta DCM\left(c.g.c\right)\Rightarrow\hept{\begin{cases}AB=CD\\\widehat{BAM}=\widehat{DCM}\end{cases}}\)
Mà \(\widehat{BAM}=90^0\left(\widehat{BAC}=90^0\right)\Rightarrow\widehat{DCM}=90^0\Rightarrow AC\perp CD\)
b, MB = MD (gt) và \(M\in BD\Rightarrow\) M là trung điểm của BD \(\Rightarrow BD=2BM\)
Áp dụng bất đẳng thức tam giác vào \(\Delta BCD:CD+BC>BD\)
\(\Rightarrow AB+BC>2BM\)(vì AB = CD, BD = 2BM)
c, Tam giác ABC vuông tại A \(\Rightarrow AB< BC\) (trong tam giác vuông, cạnh huyền lớn nhất)
\(\Rightarrow CD< BC\Rightarrow\widehat{CBD}< \widehat{D}\) (quan hệ giữa góc và cạnh đối diên trong tam giác BCD)
\(\Delta BAM=\Delta DCM\left(cmt\right)\Rightarrow\widehat{ABM}=\widehat{D}\)
Do đó: \(\widehat{CBD}< \widehat{ABM}\Rightarrow\widehat{CBM}< \widehat{ABM}\)
Chúc bạn học tốt.
a) ta có: tam giác ABC cân tại A
=> AB = AC = 5 cm ( định lí tam giác cân)
=> AC = 5 cm
=> AC < BC ( 5 cm < 6 cm)
\(\Rightarrow\widehat{ABC}< \widehat{BAC}\) ( quan hệ cạnh và góc đối diện)
b) Xét tam giác ABD và tam giác ACD
có: AB = AC (gt)
góc BAD = góc CAD (gt)
AD là cạnh chung
\(\Rightarrow\Delta ABD=\Delta ACD\left(c-g-c\right)\)
c) Xét tam giác ABC cân tại A
có: AD là đường phân giác góc BAC (gt)
=> AD là đường trung tuyến của BC ( tính chất trong tam giác cân)
mà BE là đường trung tuyến của AC (gt)
AD cắt BE tại G (gt)
=> G là trọng tâm của tam giác ABC ( định lí trọng tâm)
=> CF là đường trung tuyến của AB ( định lí )
=> AF = BF ( định lí đường trung tuyến)
d) Xét tam giác ABC cân tại A
có: AD là đường phân giác của góc BAC (gt)
=> AD là đường cao ứng với cạnh BC ( tính chất tam giác cân)
\(\Rightarrow AD\perp BC⋮D\) ( định lí đường cao)
mà AD là đường trung tuyên của BC ( phần c)
=> BD = CD = BC/2 = 6/2 = 3 cm
=> BD = 3cm
Xét tam giác ABD vuông tại D
có: \(BD^2+AD^2=AB^2\left(py-ta-go\right)\)
thay số: \(3^2+AD^2=5^2\)
\(AD^2=5^2-3^2\)
\(AD^2=16\)
\(\Rightarrow AD=4cm\)
mà G là trọng tâm của tam giác ABC
AD là đường trung tuyến của BC
\(\Rightarrow\frac{DG}{AD}=\frac{1}{3}\Rightarrow\frac{DG}{4}=\frac{1}{3}\Rightarrow DG=\frac{4}{3}cm\)
Xét tam giác DGB vuông tại D
có: \(DG^2+BD^2=BG^2\left(py-ta-go\right)\)
thay số: \(\left(\frac{4}{3}\right)^2+3^2=BG^2\)
\(BG^2=\frac{97}{9}\)
\(\Rightarrow BG=\sqrt{\frac{97}{9}}cm\)
mk ko bít kẻ hình trên này, sorry bn nhiều nhé!
A B C K I H
Vì AB vuông với AC ; HK vuông với AC => AB // HK
b) AH là đường trung trực của KI => tam giác AKI cân hoặc chúng minh tam giác AHI = tam giác AHK
c) Ta có : góc BAK + góc KAH = 90
mà KAH + HKA = 90 độ
nên BAK = HKA mà HKA = AIK => AIK = BAK
d) Vì AKH = AIH => KAH = IAH ( 90 - AKH = 90 - IAH)
Xét tam giác AIC và tam giác AKC ta có :
Ak = AI (cmt)
AC chung
KAH = IAH (cmt)
=> tam giác AIC = tam giác AKC
kẻ DE vuông góc AC tại E
.....
mk chỉ hướng dẫn vậy thôi
dùng tam giác 90-60-30
tam giác đều