\(\widehat{AOB}=150^o\)(O nằm trong tam giác ). Cmr:
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

Giải bài 4 trang 105 sgk Hình học 11 | Để học tốt Toán 11

31 tháng 3 2017

Giải bài 4 trang 105 sgk Hình học 11 | Để học tốt Toán 11

18 tháng 3 2016

A B Co C1 O A1 Ao C B1 Bo H

Đặt \(\overrightarrow{u}=\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}-\overrightarrow{OH}\)

Ta sẽ chứng minh \(\overrightarrow{u}=\overrightarrow{O}\)

Gọi A1, B1, C1 theo thứ tự là hình chiếu của A, B, C ( cũng là hình chiếu của H) trên các đường thẳng BC, CA, AB và gọi Ao, Bo, Co theo thứ tự là trung điểm BC, CA, AB (như hình vẽ)

Chiếu vectơ \(\overrightarrow{u}\)  lên đường thẳng BC theo phương của \(\overrightarrow{AH}\) ta được 

\(\overrightarrow{u_a}=\overrightarrow{A_oA_1}+\overrightarrow{A_oB}+\overrightarrow{A_oC}-\overrightarrow{A_oA_1}=\overrightarrow{O}\)

Suy ra  \(\overrightarrow{u}\)  cùng phương với \(\overrightarrow{AH}\)  (1)

Tương tự như vậy,

ta cũng có  \(\overrightarrow{u}\)   cùng phương với \(\overrightarrow{BH,}\overrightarrow{CH}\) (2)

Từ (1) và (2) và do các vectơ \(\overrightarrow{AH,}\)\(\overrightarrow{BH},\overrightarrow{CH}\) đôi một không cùng phương suy ra \(\overrightarrow{u}=\overrightarrow{O}\)

Vậy \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OH}\)

Nhưng \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=3\overrightarrow{OG}\) nên \(\overrightarrow{OH}=3\overrightarrow{OG}\)

Do đó G, H, O thẳng hàng

 
 
NV
15 tháng 4 2020

\(\left\{{}\begin{matrix}AO\perp OB\\AO\perp OC\end{matrix}\right.\) \(\Rightarrow AO\perp\left(ABC\right)\Rightarrow OA\perp BC\)

\(OH\perp\left(ABC\right)\Rightarrow OH\perp BC\)

\(\Rightarrow BC\perp\left(OAH\right)\)

b/ \(BC\perp\left(OAH\right)\Rightarrow BC\perp AH\Rightarrow AH\) là 1 đường cao trong tam giác ABC

Chứng minh tương tự câu a ta có\(AC\perp\left(OBH\right)\Rightarrow AC\perp BH\Rightarrow BH\) cùng là 1 đường cao

\(\Rightarrow H\) là trực tâm tam giác ABC

c/ Gọi M là giao điểm AH và BC \(\Rightarrow AM\perp BC\)

Áp dụng hệ thức lượng: \(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OM^2}\) (2)

\(BC\perp\left(OAH\right)\Rightarrow BC\perp OM\Rightarrow OM\) là đường cao ứng với cạnh huyền trong tam giác vuông OBC

Áp dụng hệ thức lượng: \(\frac{1}{OM^2}=\frac{1}{OB^2}+\frac{1}{OC^2}\) (3)

(2);(3) \(\Rightarrow\) đpcm

d/ \(cosA=\frac{AB^2+AC^2-BC^2}{2AB.AC}=\frac{OA^2+OB^2+OA^2+OC^2-\left(OB^2+OC^2\right)}{2AB.AC}=\frac{OA^2}{AB.AC}>0\)

\(\Rightarrow A\) là góc nhọn

Tương tự ta có: \(cosB=\frac{OB^2}{AB.BC}>0\) ; \(cosC=\frac{OC^2}{AC.BC}>0\) nên B, C đều nhọn

Vậy ABC là tam giác nhọn

24 tháng 4 2016

Số tam giác là \(C_{2n}^3\). Một đa giác đều 2n đỉnh thì có n đường chéo xuyên tâm. Cứ 2 đường chéo xuyên tâm thì có một hình chữ nhật theo yêu cầu. Vậy số hình chữ nhật là \(C_n^2\).

Theo bài ta có phương trình :

\(C_{2n}^3=20C_n^2,\left(n\ge2\right)\)

\(\Leftrightarrow\frac{\left(2n\right)!}{\left(2n-3\right)!3!}=20\frac{n!}{\left(n-2\right)!2!}\)

\(\Leftrightarrow\frac{\left(2n-2\right)\left(2n-1\right)2n}{3}=20\left(n-1\right)n\)

\(\Leftrightarrow2\left(n-1\right)\left(2n-1\right)2n=60\left(n-1\right)n\)

\(\Leftrightarrow2n-1=15\), (do \(n\ge2\))

\(\Leftrightarrow n=18\)

Vậy đa giác đều có 16 cạnh, (thập lục giác đều)

31 tháng 3 2017

a)

Gọi r = OA, α là góc lượng giác (Ox, OA), β là góc lượng giác (Ox, OA'). Giả sử A'= ( x'; y'). Khi đó ta có:

β = α - , x = r cos α, y = r sin α

Suy ra:

x' = r cos β = r cos ( α - ) = r sinα = y

y' = r sin β = r sin ( α - ) = - r cos α= - x

Do đó phép quay tâm O góc - biến A(-3;2) thành A'(2;3). Các trường hợp khác làm tương tự

b)

undefined

Gọi tam giác {A_{1}}^{}{B_{1}}^{}{C_{1}}^{} là ảnh của tam giác A'B'C' qua phép đối xứng trục Ox. Khi đó {A_{1}}^{}(2;-3), {B_{1}}^{} (5;-4), {C_{1}}^{}(3;-1) là đáp số cần tìm.

31 tháng 3 2017

a) (hình bên)

Gọi r = OA, α là góc lượng giác (Ox, OA), β là góc lượng giác (Ox, OA'). Giả sử A'= ( x'; y'). Khi đó ta có:

β = α - , x = r cos α, y = r sin α

Suy ra

x' = r cos β = r cos ( α - ) = r sinα = y

y' = r sin β = r sin ( α - ) = - r cos α= - x

Do đó phép quay tâm O góc - biến A(-3;2) thành A'(2;3). Các trường hợp khác làm tương tự

b) ( hình 1.26)

Gọi tam giác {A_{1}}^{}{B_{1}}^{}{C_{1}}^{} là ảnh của tam giác A'B'C' qua phép đối xứng trục Ox. Khi đó {A_{1}}^{}(2;-3), {B_{1}}^{} (5;-4), {C_{1}}^{}(3;-1) là đáp số cần tìm