K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2019

Xét tam giác ABC có BD và AM là 2 đường trung tuyến cắt nhau tại I

=> I là trọng tâm tam giác ABC

=> \(\frac{IB}{ID}=\frac{2}{1}\)(1)

Vì AK//BC nên \(\frac{IK}{IB}=\frac{IA}{IM}=\frac{2}{1}\)

=> \(\frac{KB}{IB}=\frac{IB}{IB}+\frac{IK}{IB}=1+\frac{2}{1}=\frac{3}{1}\)

\(\frac{KD}{IB}=\frac{IK}{IB}-\frac{ID}{IB}=\frac{2}{1}-\frac{1}{2}=\frac{3}{2}\)

\(\Rightarrow\frac{KB}{KD}=\frac{3}{1}:\frac{3}{2}=\frac{2}{1}\)(2)

Từ (1) , (2) => Đpcm

2:

a: HM là đường trung bình của ΔEBC

=>EH=HB

KM là đường trug bình của ΔFBC

=>FK=KC

ΔAHM có EO//HM

=>AE/AH=AO/AM

ΔAKM có KM//FO

nên AF/AK=AO/AM

=>AE/AH=AF/AK

=>EF//HK

b: ΔAHM có EO//HM

=>MA/MO=HA/HE

=>MA/MO=HA/HB

ΔAKM có FO//KM

=>MA/MO=KA/KF=KA/KC

=>HA/HB=KA/KC

=>HK//BC

=>EF//BC

29 tháng 9 2019

M A B C I D E

a) Cm AD=DE=CE

Xét ΔABC , ta có:

\(\begin{cases} I là trung điểm AM(gt) \\ ID//ME( BD//ME,I \in BD) \end{cases} \)

=> AD=DE (1)

Xét ΔBDC, ta có:

\(\begin{cases} M là trung điểm BC( gt)\\ ME//BD(gt) \end{cases}\)

=> DE=CE (2)

Từ (1) và (2) suy ra: AD = DE = CE

b) Cm \(ID=\dfrac{1}{4}BD\)

Xét ΔAEM, ta có:

\(\begin{cases} I là trung điểm AM(gt)\\ D là trung điểm AE (AD=DE) \end{cases}\)

=> ID là đường trung bình ΔAEM.

=> \(ID\parallel ME, ID=\dfrac{1}{2}ME\)=> 2ID=ME

Xét ΔBDC, ta có:

\(\begin{cases} M là trung điểm BC(gt)\\ E là trung điểm CD(DE=CE) \end{cases} \)

=> ME là đường trung bình ΔBDC

=>\(ME\parallel BD, ME=\dfrac{1}{2} BD\)

Mà : ME=2ID(cmt)

Suy ra: \(2ID=\dfrac{1}{2}BD\)

\(ID=\dfrac {1}{2}BD:2\)

\(ID=\dfrac{1}{4}BD\)(đpcm)

29 tháng 9 2019

Chúc bạn học tốt!