Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D A B C l M K
Từ M kẻ MK // BD (K thuộc DC)
a, Xét t/g DBC có: MK // BD, MB = MC (gt)
=> MK là đường trung bình của t/g DBC
=> CK = DK (1)
Xét t/g AMK có: MK // ID, IA = IM (gt)
=> ID là đường trung bình của t/g AMK
=> DA = DK (2)
Từ (1) và (2) => CK = DA
Mà CK = \(\frac{DC}{2}\)
=>\(DA=\frac{DC}{2}\left(đpcm\right)\)
b, Vì MK là đường trung bình của t/g DBC
=> \(MK=\frac{BD}{2}\left(3\right)\)
Vì ID là đường trung bình của t/g AMK
=>\(ID=\frac{MK}{2}\left(4\right)\)
Từ (3) và (4) => BD > ID
Bạn có cần mình vẽ hình không, thôi mình cứ vẽ cho rõ ràng nhé, mà hình không chắc đúng đâu nha :33
A B C M K D E
a) Xét tam giác \(ACM\), KM là tia phân giác của \(\widehat{AMC}\)
\(\Rightarrow\frac{AM}{MC}=\frac{AD}{DC}\) ( tính chất đường phân giác trong tam giác )
Mà : \(MC=MB\) ( Do M là trung điểm của BC )
\(\Rightarrow\frac{AM}{MB}=\frac{AD}{DC}\) ( đpcm )
b) Chứng minh tương tự phần a) với tam giác \(AMB\) ta có : \(\frac{AM}{MB}=\frac{AK}{BK}\) ( tính chất đường phân giác trong tam giác )
Khi đó : \(\frac{AK}{BK}=\frac{AD}{DC}\left(=\frac{AM}{MB}\right)\)
\(\Rightarrow\frac{AK}{AB}=\frac{AD}{AC}\)
Xét \(\Delta ABC,K\in AB,D\in AC\) và \(\frac{AK}{AB}=\frac{AD}{AC}\left(cmt\right)\)
\(\Rightarrow KD//BC\) ( định lý Talet đảo ) (đpcm)
c) Áp dụng định lý Talet cho các tam giác ABM , ACM ta có :
+) \(EK//BM\Rightarrow\frac{KE}{BM}=\frac{AE}{AM}\)
+) \(ED//MC\Rightarrow\frac{ED}{MC}=\frac{AE}{AM}\)
\(\Rightarrow\frac{KE}{BM}=\frac{ED}{MC}\Rightarrow EK=ED\) ( do \(BM=CM\) )
Nên : E là trung điểm của KD ( đpcm )
d) Ta có : \(KD=10\Rightarrow KE=5\)
Theo câu c) ta có : \(\frac{KA}{AB}=\frac{AE}{AM}=\frac{KE}{BM}\Rightarrow\frac{5}{8}=\frac{KE}{BM}=\frac{5}{BM}\)
\(\Rightarrow BM=8\Rightarrow BC=16\left(cm\right)\)
Vậy : \(BC=16cm\)
a: Kẻ MK//BD
Xét ΔBDC có
M là trung điểm của BD
KM//BD
Do đó:K là trung điểm của CD
=>DK=KC(1)
Xét ΔAMK co
I là trung điểm của AM
ID//MK
Do đó: D là trung điểm của AK
=>AD=DK(2)
Từ (1) và (2) suy ra AD=DK=KC
hay AD=1/2DC
b: Ta có: BD=2MK
mà MK=2ID
nên BD=4ID
câu B cũng dùng cái TÍNH CHẤT chung đường cao và c/m những cái sau nhé:
SAMC=1/2SABC
SBCD=2/3SABC(DO AD=1/2CD MÀ AD+CD=AC=>CD=2/3 AC)
=>SAMC=3/4SBCD(3)
SCID=2/3SAIC(DO CD=2/3AC)
SAIC=1/2SAMC
=>SCID=1/3SAMC(4)
TỪ 3 VÀ 4=>SCID=1/4SBCD
DO 2 TAM GIÁC CHUNG ĐƯỜNG CAO TỪ C->BD
=>ID=1/4BC
DO ID+DB=BC
=>BD=1-1/4=3/4BC
=>BD/ID=3
a: Gọi K là trung điểm của DC
Suy ra: AD=DK=KC
Xét ΔBDC có
M là trung điểm của BC
K là trung điểm của CD
Do đó: MK là đường trung bình của ΔBDC
Suy ra: MK//ID
Xét ΔAMK có
D là trung điểm của AK
DI//MK
Do đó: I là trung điểm của AM