\(\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2018

D A B C l M K

Từ M kẻ MK // BD (K thuộc DC)

a, Xét t/g DBC có: MK // BD, MB = MC (gt)

=> MK là đường trung bình của t/g DBC

=> CK = DK (1)

Xét t/g AMK có: MK // ID, IA = IM (gt)

=> ID là đường trung bình của t/g AMK

=> DA = DK (2)

Từ (1) và (2) => CK = DA

Mà CK = \(\frac{DC}{2}\)

=>\(DA=\frac{DC}{2}\left(đpcm\right)\)

b, Vì MK là đường trung bình của t/g DBC

=> \(MK=\frac{BD}{2}\left(3\right)\)

Vì ID là đường trung bình của t/g AMK

=>\(ID=\frac{MK}{2}\left(4\right)\)

Từ (3) và (4) => BD > ID

13 tháng 2 2020

Bạn có cần mình vẽ hình không, thôi mình cứ vẽ cho rõ ràng nhé, mà hình không chắc đúng đâu nha :33

A B C M K D E

a) Xét tam giác \(ACM\), KM là tia phân giác của \(\widehat{AMC}\)

\(\Rightarrow\frac{AM}{MC}=\frac{AD}{DC}\) ( tính chất đường phân giác trong tam giác )

Mà : \(MC=MB\) ( Do M là trung điểm của BC )

\(\Rightarrow\frac{AM}{MB}=\frac{AD}{DC}\) ( đpcm )

b) Chứng minh tương tự phần a) với tam giác \(AMB\) ta có : \(\frac{AM}{MB}=\frac{AK}{BK}\) ( tính chất đường phân giác trong tam giác )

Khi đó : \(\frac{AK}{BK}=\frac{AD}{DC}\left(=\frac{AM}{MB}\right)\)

\(\Rightarrow\frac{AK}{AB}=\frac{AD}{AC}\)

Xét \(\Delta ABC,K\in AB,D\in AC\) và \(\frac{AK}{AB}=\frac{AD}{AC}\left(cmt\right)\)

\(\Rightarrow KD//BC\) ( định lý Talet đảo ) (đpcm)

c)  Áp dụng định lý Talet cho các tam giác ABM , ACM ta có :

+) \(EK//BM\Rightarrow\frac{KE}{BM}=\frac{AE}{AM}\)

+) \(ED//MC\Rightarrow\frac{ED}{MC}=\frac{AE}{AM}\)

\(\Rightarrow\frac{KE}{BM}=\frac{ED}{MC}\Rightarrow EK=ED\) ( do \(BM=CM\) )

Nên : E là trung điểm của KD ( đpcm )

d) Ta có : \(KD=10\Rightarrow KE=5\)

Theo câu c) ta có : \(\frac{KA}{AB}=\frac{AE}{AM}=\frac{KE}{BM}\Rightarrow\frac{5}{8}=\frac{KE}{BM}=\frac{5}{BM}\)

\(\Rightarrow BM=8\Rightarrow BC=16\left(cm\right)\)

Vậy : \(BC=16cm\)

a: Kẻ MK//BD

Xét ΔBDC có

M là trung điểm của BD

KM//BD

Do đó:K là trung điểm của CD

=>DK=KC(1)

Xét ΔAMK co

I là trung điểm của AM

ID//MK

Do đó: D là trung điểm của AK

=>AD=DK(2)

Từ (1) và (2) suy ra AD=DK=KC

hay AD=1/2DC

b: Ta có: BD=2MK

mà MK=2ID

nên BD=4ID

 

15 tháng 7 2015

câu B cũng dùng cái TÍNH CHẤT chung đường cao và c/m những cái sau nhé:

SAMC=1/2SABC

SBCD=2/3SABC(DO AD=1/2CD MÀ AD+CD=AC=>CD=2/3 AC)

=>SAMC=3/4SBCD(3)

SCID=2/3SAIC(DO CD=2/3AC)

SAIC=1/2SAMC

=>SCID=1/3SAMC(4)

TỪ 3 VÀ 4=>SCID=1/4SBCD

DO 2 TAM GIÁC CHUNG ĐƯỜNG CAO TỪ C->BD

=>ID=1/4BC

DO ID+DB=BC

=>BD=1-1/4=3/4BC

=>BD/ID=3

a: Gọi K là trung điểm của DC

Suy ra: AD=DK=KC

Xét ΔBDC có 

M là trung điểm của BC

K là trung điểm của CD

Do đó: MK là đường trung bình của ΔBDC

Suy ra: MK//ID

Xét ΔAMK có 

D là trung điểm của AK

DI//MK

Do đó: I là trung điểm của AM