Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do trắc nghiệm nên ta chỉ cần xét trường hợp đặc biệt nhất: đường thẳng này đi qua B, khi đó M trùng B và N là trung điểm AC
\(\Rightarrow\overrightarrow{AM}.\overrightarrow{AN}=\dfrac{1}{2}\overrightarrow{AB}.\overrightarrow{AC}\)
Đồng thời do \(\overrightarrow{MB}=\overrightarrow{0}\) và \(\overrightarrow{NC}=\overrightarrow{AN}=\dfrac{1}{2}\overrightarrow{AC}\) nên đáp án D đúng
Ta có:
\(\begin{array}{l}M{A^2} + M{B^2} + M{C^2} = {\overrightarrow {MA} ^2} + {\overrightarrow {MB} ^2} + {\overrightarrow {MC} ^2}\\ = {\left( {\overrightarrow {MG} + \overrightarrow {GA} } \right)^2} + {\left( {\overrightarrow {MG} + \overrightarrow {GB} } \right)^2} + {\left( {\overrightarrow {MG} + \overrightarrow {GC} } \right)^2}\\ = {\overrightarrow {MG} ^2} + 2\overrightarrow {MG} .\overrightarrow {GA} + {\overrightarrow {GA} ^2} + {\overrightarrow {MG} ^2} + 2\overrightarrow {MG} .\overrightarrow {GB} + {\overrightarrow {GB} ^2} + {\overrightarrow {MG} ^2} + 2\overrightarrow {MG} .\overrightarrow {GC} + {\overrightarrow {GC} ^2}\\ = 3{\overrightarrow {MG} ^2} + 2\overrightarrow {MG} .\left( {\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} } \right) + {\overrightarrow {GA} ^2} + {\overrightarrow {GB} ^2} + {\overrightarrow {GC} ^2}\\ = 3{\overrightarrow {MG} ^2} + 2\overrightarrow {MG} .\overrightarrow 0 + {\overrightarrow {GA} ^2} + {\overrightarrow {GB} ^2} + {\overrightarrow {GC} ^2}\end{array}\)
( do G là trọng tâm tam giác ABC)
\(\begin{array}{l} = 3{\overrightarrow {MG} ^2} + {\overrightarrow {GA} ^2} + {\overrightarrow {GB} ^2} + {\overrightarrow {GC} ^2}\\ = 3M{G^2} + G{A^2} + G{B^2} + G{C^2}\end{array}\) (đpcm).
Tọa độ trọng tâm G của ΔABC là \(G\left(1;\dfrac{m}{3}\right)\)
⇒ \(\left\{{}\begin{matrix}\overrightarrow{AG}=\left(2;\dfrac{m}{3}\right)\\\overrightarrow{BG}=\left(-3;\dfrac{m}{3}\right)\end{matrix}\right.\)
Để ΔGAB vuông tại G
⇒ GA ⊥ GB
⇒ \(\overrightarrow{GA}\) ⊥ \(\overrightarrow{GB}\)
⇒ \(\overrightarrow{GA}.\overrightarrow{GB}=0\)
⇒ 2 . (-3) + \(\dfrac{m^2}{9}\) = 0
⇒ m2 = 6 . 9 = 54
⇒ m = \(\pm\sqrt{54}\)
Mình chắc chắn cách làm của mình là đúng còn về tính toán thì chưa chắc nên bạn tự kiểm tra nhá
Do G là trọng tâm tam giác và trung tuyến AM nên AM = 3GM.
Suy ra: A M → = - 3 M G →
Đáp án D