Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
G A B C M
A. Ta có G là trọng tâm của tam giác ABC
\(\Rightarrow\overrightarrow{AG}=2\overrightarrow{GM}\)
Hay: \(\overrightarrow{GA}=-2\overrightarrow{GM}\)
\(\Rightarrow\overrightarrow{GA}+2\overrightarrow{GM}=\overrightarrow{0}\) ( Đúng)
B. Ta có:
\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OG}+\overrightarrow{GA}+\overrightarrow{OG}+\overrightarrow{GB}+\overrightarrow{OG}+\overrightarrow{GC}\)
\(=\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)+3\overrightarrow{OG}=\overrightarrow{0}+3\overrightarrow{OG}=\overrightarrow{3OG}\) ( Đúng)
C. \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\) ( Đúng, đây là điều hiển nhiên)
D. Ta có G là trọng tâm của tam giác ABC
\(\Rightarrow\overrightarrow{AM}=3\overrightarrow{GM}\)
\(\Rightarrow\overrightarrow{AM}=-3\overrightarrow{GM}\)
Vậy đáp án D sai
Mệnh đề C sai
\(\overrightarrow{GA}+\overrightarrow{GB}=-\overrightarrow{GC}\)
Mà hai vecto \(\overrightarrow{GC}\) và \(\overrightarrow{AM}\) ko cùng phương nên đẳng thức \(\overrightarrow{GA}+\overrightarrow{GB}=\frac{3}{2}\overrightarrow{AM}\) ko thể xảy ra
Câu 1:
\(AC=\sqrt{AB^2+BC^2}=\sqrt{2}\)
\(\Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=AB.AC.cos45^0=1.\sqrt{2}.\frac{\sqrt{2}}{2}=1\)
Đáp án D sai
Câu 2:
\(BN=\frac{1}{2}BM=\frac{1}{4}BC\Rightarrow4\overrightarrow{BN}=\overrightarrow{BC}\)
Ta có:
\(4\overrightarrow{AN}=4\left(\overrightarrow{AB}+\overrightarrow{BN}\right)=4\overrightarrow{AB}+4\overrightarrow{BN}=4\overrightarrow{AB}+\overrightarrow{BC}\)
\(=4\overrightarrow{AB}+\overrightarrow{BA}+\overrightarrow{AC}=4\overrightarrow{AB}-\overrightarrow{AB}+\overrightarrow{AC}=3\overrightarrow{AB}+\overrightarrow{AC}\)
Đáp án A đúng
a: vecto MA+2vectoMB=vecto 0
=>vecto MA=-2vecto MB
=>M nằm giữa A và B và MA=2MB
c: vecto MA+vecto MB+vecto MC=vecto 0
nên M là trọng tâm của ΔABC
\(\overrightarrow{BI}=\overrightarrow{BC}+\overrightarrow{CI}=\overrightarrow{BC}-\frac{1}{2}\overrightarrow{AB}\)
\(\overrightarrow{BG}=\frac{1}{3}\left(\overrightarrow{BI}+\overrightarrow{BC}\right)=\frac{1}{3}\left(\overrightarrow{BC}-\frac{1}{2}\overrightarrow{AB}+\overrightarrow{BC}\right)=\frac{2}{3}\overrightarrow{BC}-\frac{1}{6}\overrightarrow{AB}\)
\(\overrightarrow{AG}=\overrightarrow{AB}+\overrightarrow{BG}=\overrightarrow{AB}+\frac{2}{3}\overrightarrow{BC}-\frac{1}{6}\overrightarrow{AB}=\frac{5}{6}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{BC}=\frac{5}{6}\overrightarrow{a}+\frac{2}{3}\overrightarrow{b}\)
\(3\overrightarrow{MA}+2\overrightarrow{MC}=0\Leftrightarrow3\overrightarrow{MA}+2\overrightarrow{MA}+2\overrightarrow{AC}=0\)
\(\Leftrightarrow5\overrightarrow{MA}=-2\overrightarrow{AC}\Leftrightarrow\overrightarrow{MA}=-\frac{2}{5}\overrightarrow{AC}\Leftrightarrow\overrightarrow{AM}=\frac{2}{5}\overrightarrow{AC}\)
\(\overrightarrow{NA}-2\left(\overrightarrow{NA}+\overrightarrow{AB}\right)=0\Leftrightarrow\overrightarrow{NA}=-2\overrightarrow{AB}\)
\(\overrightarrow{NG}=\overrightarrow{NA}+\overrightarrow{AG}=-2\overrightarrow{AB}+\frac{1}{3}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)=-\frac{5}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}\)
\(\overrightarrow{GM}=\overrightarrow{GA}+\overrightarrow{AM}=-\frac{1}{3}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)+\frac{2}{5}\overrightarrow{AC}\)
\(\Rightarrow\overrightarrow{GM}=-\frac{1}{3}\overrightarrow{AB}+\frac{1}{15}\overrightarrow{AC}=\frac{1}{5}\left(-\frac{5}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}\right)=\frac{1}{5}\overrightarrow{NG}\)
\(\Rightarrow\overrightarrow{NG}=5\overrightarrow{GM}\)