Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gia sử AB < AC
Kẻ BM,CN // DE , trung tuyến AF
Tam giác BMF = tam giác CNF ( g.c.g)
=> MF = NF
=> AB/AD = AM/AG ; AC/AE = AN/AG
=> AB/AD = AM+AN/AG = AF-MF+AF+NF/AG = 2AF/AG = 3 ( VÌ AF = 3/2.AG )
=> ĐPCM
Tk mk nha
Gia sử AB < AC
Kẻ BM,CN // DE , trung tuyến AF
Tam giác BMF = tam giác CNF ( g.c.g)
=> MF = NF
=> AB/AD = AM/AG ; AC/AE = AN/AG
=> AB/AD = AM+AN/AG = AF-MF+AF+NF/AG = 2AF/AG = 3 ( VÌ AF = 3/2.AG )
=> ĐPCM
Tk mk nha
Nguồn : Mạng (Cậu tham khảo nhé)
G là trọng tâm ΔABC ⇒ AD/AG = 3/2; DG/AG = 1/2
D là trung điểm BC và BI//CK ⇒ Δ BDI = ΔCDK (g.c.g)
⇒ D là trung điểm IK ⇒ AI + AK = 2AD; IG + KG = 2DG;
Ta có:
1) AB/AM + AC/AN = AI/AG + AK/AG = (AI + AK)/AG = 2AD/AG = 2.(3/2) = 3 (đpcm)
2) BM/AM + CN/AN = IG/AG + KG/AG = (IG + KG)/AG = 2DG/AG = 2.(1/2) = 1 (đpcm)