Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : AB=3AN
mà AN =2
=>AB= 3.2=6
=>AB=6
Ta còn có : AM = 1/2 AB
Vì M là trung điểm AB
=> AM=1/2.6
=>AM=3
Bạn kia sai rồi. Đề có cho M là trung điểm của AB đâu, chỉ cho M nằm giữa A và B thôi.
Câu 1. B) m ≠ ±3
Câu 2. B) 3
Câu 3. C) 8cm
Câu 4. C) AB.DF = AC.DE
Câu 5. B) AC = 6cm
không hiểu chỗ nào ib mình giảng
Câu 1: Cho tam giác ABC, một đường thẳng // với BC cắt AB và AC lần lượt tại D và E. Khẳng định nào sau đây đúng
A.DCDB=EAECDCDB=EAEC B. DC.DB=EC.EA
C. DC.EC=DB.EA D. DC.ea=DB.EC
Câu 2: Cho tam giác ABC, MN//BC với M nằm giữa A và B, N nằm giữa A và C. Biết AN=2cm, AB=3AM. Kết quả nào đúng
A. AC=6cm B. CN=3cm C. AC=9cm D. CN=1,5cm
Câu3: Cho tam giác ABC, AB=14cm, AC =21cm. AD là phân giác của góc A. Biết BD=8cm. Độ dài cạnh BC là
A. 15cm B. 18cm C. 20cm D. 22cm
Câu 4: Cho tam giác MNK, NS là phân giác góc MNK. Biết MN=3cm, NK=5cm, MS=1,5cm. Ta có SK=
A. 2,5cm B. 0,1cm C.0,4cm D.10cm
a) Do MN//BC nên theo hệ quả của ĐL Ta-let ta có \(\dfrac{AM}{AB}\)=\(\dfrac{MN}{BC}\)
\(\Rightarrow\) \(\dfrac{2}{4}\) = \(\dfrac{MN}{6}\)\(\Rightarrow\) MN = \(\dfrac{2\times6}{4}\)\(\Rightarrow\) MN = 3 cm
b) Do MN//BC nên theo ĐL Ta-let ta có \(\dfrac{AM}{AB}\)=\(\dfrac{AN}{AC}\)
\(\Rightarrow\)\(\dfrac{12}{15}\)=\(\dfrac{AN}{18}\)\(\Rightarrow\) AN = \(\dfrac{12\times18}{15}\) = 14,4 cm
Xét ΔABC có
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(=\dfrac{1}{4}\right)\)
Do đó: MN//BC(Định lí Ta lét đảo)
Xét ΔABC có MN//BC(cmt)
nên \(\dfrac{MN}{BC}=\dfrac{AM}{AB}\)(Hệ quả của Định lí Ta lét)
\(\Leftrightarrow MN=\dfrac{1}{4}\cdot8=2\left(cm\right)\)
a
Do \(MN//BC\) nên theo định lý Thales ta có:\(\frac{AN}{NC}=\frac{AM}{MB}=\frac{MN}{BC}\)
\(\Rightarrow\frac{8}{NC}=\frac{3}{2}\Rightarrow NC=\frac{16}{3}\)
Áp dụng định Pythagoras ta có:\(AM^2+AN^2=MN^2\Rightarrow MN=\sqrt{AM^2+AN^2}=10\)
Mà \(\frac{AM}{MB}=\frac{MN}{BC}\Rightarrow\frac{3}{2}=\frac{10}{BC}\Rightarrow BC=\frac{20}{3}\)
b
Hạ \(NH\perp BC;MG\perp BC\)
Áp dụng định lý Pythagoras vào tam giác ABC ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow AB^2=\sqrt{BC^2-AC^2}\Rightarrow AB=\sqrt{10-\left(\frac{16}{3}\right)^2-8^2}=\frac{2\sqrt{17}}{3}\)
Bạn áp dụng định lý Ta Lét ( do ND//AB ) rồi tính được ND
Diện tích tam giác vuông NCD sẽ tính bằng \(\frac{NC\cdot ND}{2}\) ( do đã biết được ND và NC )
Lại có \(S_{NCD}=\frac{NH\cdot CD}{2}\) rồi tính được NH.
Do NH=MG nên tính được diện tích hình bình hành BMND.Hướng là thế đấy,bạn làm tiếp nha,mik nhác quá:(
A
cho tam giác abc có mn//bc (m nằm giữa a và b ;n nằm giữa a và c) .biết an=2cm;ab=3cm ;am=1cm.độ dài đoạn thẳng ac là:
a.6cm b.4cm c.8cm d.1,5cm
chúc em học tốt nhé
@Admin