Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ∆AMC và ∆NMB có:
+ AM = NM (gt).
+ Góc AMC = Góc NMB (đối đỉnh).
+ CM = BM (M là trung điểm của BC).
=> ∆AMC = ∆NMB (c - g - c).
b) ∆AMC = ∆NMB (cmt).
=> Góc CAM = Góc BNM (cặp góc tương ứng).
Mà 2 góc này ở vị trí so le trong.
=> AC // BN (dhnb).
c) ∆AMC = ∆NMB (cmt).
=> AC = NB (cặp cạnh tương ứng).
Xét tứ giác ACNB có:
+ AC = BN (cmt).
+ AC // BN (cmt).
=> Tứ giác ACNB là hình bình hành (dhnb).
=> AB // NC (tính chất hình bình hành).
b: Xét tứ giác ABNC có
M là trung điểm của AN
M là trung điểm của BC
Do đó: ABNC là hình bình hành
Suy ra: AC//BN
Cậu tự hình nhé
a.ΔAMCΔAMC và ΔNMBΔNMB có:
AM= NM (gt)
ˆAMCAMC^ =ˆNMBNMB^ (2 góc đối đỉnh)
CM= MB (gt)
⇒ΔAMC=ΔNMB(c.g.c)⇒ΔAMC=ΔNMB(c.g.c)
⇒AC=BN⇒AC=BN (đpcm)
a.ΔAMC và ΔNMB có:
AM= NM (gt)
AMC =NMB (2 góc đối đỉnh)
CM= MB (gt)
⇒ΔAMC=ΔNMB(c.g.c)
⇒AC=BN (đpcm)
b.ΔAMB và ΔNMC có:
AM= NM (gt)
AMB= NMC (2 góc đối đỉnh)
CM= BM (gt)
⇒ΔAMB=ΔNMC(c.g.c)
BAM=CNM^ (hai góc tương ứng)
Hai góc đồng vị BAM vàCNM bằng nhau nên AB//NC (đpcm)
Cậu tự hình nhé
a.\(\Delta AMC\) và \(\Delta NMB\) có:
AM= NM (gt)
\(\widehat{AMC}\) =\(\widehat{NMB}\) (2 góc đối đỉnh)
CM= MB (gt)
\(\Rightarrow\Delta AMC=\Delta NMB\left(c.g.c\right)\)
\(\Rightarrow AC=BN\) (đpcm)
ΔAMB và ΔNMC có:
AM= NM (gt)
\(\widehat{AMB}\)= \(\widehat{NMC}\) (2 góc đối đỉnh)
CM= BM (gt)
⇒ΔAMB=ΔNMC(c.g.c)
⇒\(\widehat{BAM}\)= \(\widehat{CNM}\) (hai góc tương ứng)
Hai góc đồng vị \(\widehat{BAM}\) và \(\widehat{CNM}\) bằng nhau nên AB//NC (đpcm)