K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2017

a b c m d 1 2 3 4 e f

Xét T/G ABC và DCM 

CÓ ; M1=M2 ( đối đỉnh) CM=BM (M là trung điểm BC) AM=MD (gt) -> ABC=DCM(CgC)

Có T/G ABC=DCM ->  Góc D=BAM(2 góc tương ứng )mà 2 góc Sole trong -> AB//DC

C) Xét T/G BFM và CEM  có CM=MB(GT) E3=F4=90 độ M4=M3 ( đối đỉnh) ->  BFM=CEM(g.c.g)

-> ME=MF ->  M là trung điểm EF 

22 tháng 12 2017

A B C M D E F

a, Xét t/g ABM và t/g DCM có:

AM=DM(gt)

BM=CM(gt)

góc AMB=góc DMC (đối đỉnh)

=>t/g ABM=t/g DCM (c.g.c)

b, Vì t/g ABM=t/g DCM (cmt) => góc ABM = góc DCM (2 góc t/ứ)

Mà 2 góc này là cặp góc so le trong

=> AB//DC

c, Xét t/g BEM và t/g CFM có:

góc BEM = góc CFM = 90 độ (gt)

BM=CN(gt)

góc BME = góc CMF (đối đỉnh)

=>t/g BEM = t/g CFM (cạnh huyền - góc nhọn)

=>EM=FM (2 cạnh t/ứ)

=>M là trung điểm của EF

Bài 1: Cho tam giác ABC; M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy D sao cho ND=NM. Chứng minh: a) DC= \(\frac{1}{2}\)AB và DC // ACb) AD=MCc) MN // BC và MN =\(\frac{1}{2}\)BCBài 2: tam giác ABC có góc BAC = 90 độ và AB < AC. Trên tia đối của tia BA lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BC; N là trung điểm của DE. Đường...
Đọc tiếp

Bài 1: Cho tam giác ABC; M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy D sao cho ND=NM. Chứng minh: 

a) DC= \(\frac{1}{2}\)AB và DC // AC

b) AD=MC

c) MN // BC và MN =\(\frac{1}{2}\)BC

Bài 2: tam giác ABC có góc BAC = 90 độ và AB < AC. Trên tia đối của tia BA lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BC; N là trung điểm của DE. Đường thẳng BC cắt DE tại H. Chứng minh:

a) DE=BC

b) BC\(\perp\)DE tại H

c) AN = AM và AN\(\perp\)AM

Bài 3: Cho tam giác ABC có góc A > 90 độ, M là trung điểm của BC. Từ B kẻ đường thẳng song song với AC cắt đường thẳng AM tại N. Trên nửa mặt phẳng bờ AB không chứa C vẽ tia Ax \(\perp\)AB, trên Ax lấy điểm D sao cho AD = AB. Trên nửa mặt phẳng bờ AC không chứa B vẽ tia Ay \(\perp\)AC, trên Ay lấy điểm E sao cho AE = AC. Chứng minh:

a) BN = CA

b) góc BAC + góc DAE = 180 độ 

c) AM = \(\frac{1}{2}\)DE

Nhớ vẽ hình hộ mik nha :))

 

0

https://olm.vn/hoi-dap/detail/2134973688.html

1 tháng 6 2020

tự làm là hạnh phúc của mỗi công dân.

19 tháng 1 2018

B C A M H D E

a) Xét tam giác ABM và ACM có:

AB = AC (gt)

BM = CM (gt)

Cạnh AM chung

\(\Rightarrow\Delta ABM=\Delta ACM\left(c-c-c\right)\)

b) Ta thấy tam giác MCD có HC là đường cao đồng thời trung tuyến nên ACD là tam giác cân tại C.

Vậy thì CH hay Ca là phân giác góc \(\widehat{MCD}\)

c) Xét tam giác AMC và ADC có:

CM = CD

AC chung

\(\widehat{MCA}=\widehat{DCA}\)

\(\Rightarrow\Delta AMC=\Delta ADC\left(c-g-c\right)\)

\(\Rightarrow\widehat{ADC}=\widehat{AMC}=90^o\) hay \(AD\perp CD\)

Lại có HE // AD nên \(HE\perp CD\)