K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2016


A B C M K

Trên tia đối của tia MA, lấy K sao cho MK = MA

Trong tam giác AKC, AK < KC + AC (1)

Do AM = MK => M là trung điểm AK => AM = MK = AK/2 => 2AM = 2MK = AK (2)

Xét tam giác ABM = tam giác KCM (c-g-c) => KC = AB (3)

Từ (1); (2) và (3) => 2AM < AB + AC => AM < (AB + AC)/2

12 tháng 3 2018

A B C M D

Trên tia đối của MA lấy điểm D sao cho MA = MD

Xét \(\Delta ABM\) và \(\Delta DCM\) có:

\(BM=CM\left(gt\right)\)

\(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh)

\(MA=MD\) (cách vẽ)

\(\Rightarrow\Delta ABM=\Delta DCM\left(c.g.c\right)\)

\(\Rightarrow AB=CD\)(2 cạnh tương ứng)

Xét \(\Delta ACD\) có: \(AD< AC+CD\)

\(\Rightarrow2AM< AC+AB\)

\(\Rightarrow AM< \frac{AB+AC}{2}\left(1\right)\)

Xét \(\Delta MAB\)có: \(AM>AB-BM\)

Xét \(\Delta MAC\)có: \(AM>AC-MC\)

\(\Rightarrow AM+AM>AB-BM+AC-MC\)

\(\Rightarrow2AM>AB+AC-\left(BM+CM\right)\)

\(\Rightarrow2AM>AB+AC-BC\)

\(\Rightarrow AM>\frac{AB+AC-BC}{2}\left(2\right)\)

Từ (1) và (2) => \(\frac{AB+AC-BC}{2}< AM< \frac{AB+AC}{2}\left(đpcm\right)\)

21 tháng 2 2020

B D M A C

Áp dụng bất đẳng thức tam giác với hai tam giác AMB và AMC ,ta lần lượt có :

                          AM > AB - BM

                          AM > AC - MC

Cộng theo từng vế hai bất đẳng thức trên,ta có :

2AM > AB + AC - (BM + MC) = AB + AC - BC hay \(AM>\frac{AB+AC-BC}{2}\)                (1)

Trên tia đối của tia MA lấy điểm D sao cho MD = MA

Xét \(\Delta AMB\)và \(\Delta DMC\)có :

AM = DM(gt)

MB = MC(gt)

\(\widehat{M}\)chung

=> \(\Delta AMB=\Delta DMC\left(c-g-c\right)\)

=> \(\widehat{MAB}=\widehat{MDC}\)(hai góc tương ứng)

=> CD = AB(hai cạnh tương ứng)

Xét \(\Delta ACD\),theo bất đẳng thức tam giác ta có :

AD < AC + CD

=> \(2AM< AC+AB\)

=> \(AM< \frac{AB+AC}{2}\)(2)

Từ (1) và (2) suy ra \(\frac{AB+AC-BC}{2}< AM< \frac{AB+AC}{2}\)

Chết rồi<<trong tối nay ko có ai lm bài này rồi>>>Chết cha rồi>>>>

28 tháng 4 2019

A B C M D

Trên tia đối của tia AM lấy điểm D sao cho AM=MD

Xét tam giác AMB VÀ TAM GIÁC DMC có

MB=MC(gt)

AM=MD(cách dựng)

\(\widehat{AMB}=\widehat{DMC}\)(ĐÓI ĐỈNH)

\(\Rightarrow\)Tam giác AMB=Tam giác BMC(c-g-c)

\(\Rightarrow\)AB=CD(2 cạnh tương ứng)

Xét tam giác ACD có

AD<CD+AC(bất đẳng thức tam giác)

\(\Rightarrow\)AD<AB+AC(VÌ AB=CD)

Mà AD=AM+MD=2AM

\(\Rightarrow2AM< AB+AC\)

\(\Rightarrow AM< \frac{AB+AC}{2}\)(ĐPCM)

28 tháng 4 2019

Kẻ đoạn thẳng AM

Trên tia AM lấy điểm K sao cho M là trung điểm của AK

=> MA = MK = AK/2 => 2AM = AK

M là trung điểm của BC ( gt ) => MB = MC

Xét tam giác AMB và tam giác KMC có :

MA = MK ( cmt )

AMB = KMC ( đối đỉnh )

MB = MC ( cmt )

Do đó tam giác AMB = tam giác KMC ( c . g . c )

=> AB = CK ( 2 cạnh tương ứng )

CÓ AK < AC + CK ( bất đẳng thức trong tam giác )

hay 2AM < AC + AB

=> AM < \(\frac{AC+AB}{2}\)( dpcm )

Vậy ...

A B C D M c b

Trên tia đối của tia MA lấy điểm D sao cho MD=MA

Xét \(\Delta AMB\)và \(\Delta DMC\):

MB=MC(gt)

\(\widehat{AMB}=\widehat{DMC}\)(đối đỉnh)

BM=CM(gt)

=> \(\Delta AMB=\Delta DMC\left(c.-g-c\right)\)

=> DC=AB=c

Xét \(\Delta ACD\)có: AD<AC+DC

=> 2AM<b+c

=> \(AM< \frac{b+c}{2}\)

=> Đpcm

P/s:Phần này là phần BĐT tam giác ý, dễ mà:>