K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2019

A B C M E D

CM: a) Xét t/giác ABM và t/giác ACM

có AB = AC (gt)

  BM = MC (gt)

 AM : chung

=> t/giác ABM = t/giác ACM (c.c.c)

b) Ta có: t/giác ABM = t/giác ACM (cmt)

=> góc AMB = góc AMC (hai góc tương ứng)

Mà \(\widehat{AMB}+\widehat{AMC}=180^0\)

=> \(2\widehat{AMB}=180^0\)

=> \(\widehat{AMB}=180^0:2=90^0\)

=> AM \(\perp\)BC ( Đpcm)

c) Xét t/giác AMD và t/giác CED

có  AD = CD (gt)

 góc ADM = góc EDC (đối đỉnh)

DM = DE (gt)

=> t/giác AMD = t/giác CED (c.g.c)

=> góc MAD = góc DCE (hai góc tương ứng)

Mà góc MAD và góc DCE ở vị trí so le trong

=> AM // EC (Đpcm)

d) Ta có : t/giác MAD = t/giác DCE (cmt)

=> AM = CE (hai cạnh tương ứng)

Do AM // EC (cmt) => góc AMC + góc MCE = 1800 (trong cùng phía)

=> góc MCE = 1800 - góc AMC = 1800 - 900 = 900 (vì góc AMB = góc AMC mà góc AMB = 900 => góc AMC = 900)

Xét t/giác AMC và t/giác MCE

có AM = CE (cmt)

 góc AMC = góc MCE (cmt)

MC : chung

=> t/giác AMC = t/giác MCE (c.g.c)

=> ME = AC (hai cạnh tương ứng)

mà MD = DE = ME/2

hay AC/2 = MD (Đpcm)

16 tháng 2 2022

a) Xét tam giác ABD và tam giác ACD:

AD chung.

AB = AC (gt).

BD = CD (D là trung điểm của BC).

\(\Rightarrow\Delta ABD=\Delta ACD\left(c-c-c\right).\)

b) Xét tam giác ABC: AB = AC (gt).

\(\Rightarrow\Delta ABC\) cân tại A.

Mà AD là trung tuyến (D là trung điểm của BC).

\(\Rightarrow\) AD là phân giác \(\widehat{BAC}\) (Tính chất tam giác cân).

Xét tam giác MAD và tam giác NAD:

AD chung.

AM = AN (gt).

\(\widehat{MAD}=\widehat{NAD}\) (AD là phân giác \(\widehat{BAC}\)).

\(\Rightarrow\Delta MAD=\Delta NAD\left(c-g-c\right).\)

\(\Rightarrow\) DM = DN (2 cạnh tương ứng).

c) Xét tam giác ADC và tam giác EDB:

DC = DB (D là trung điểm của BC).

AD = ED (gt).

\(\widehat{ADC}=\widehat{EDB}\) (Đối đỉnh).

\(\Rightarrow\Delta ADC=\Delta EDB\left(c-g-c\right).\)

\(\Rightarrow\widehat{CAD}=\widehat{BED}\) (2 góc tương ứng).

\(\Rightarrow\) AC // BE.

Mà \(DK\perp BE\left(gt\right).\)

\(\Rightarrow\) \(DK\perp AC.\left(1\right)\)

Ta có: \(\widehat{AMD}=\widehat{AND}\) \(\left(\Delta MAD=\Delta NAD\right).\)

Mà \(\widehat{AMD}=90^o\left(AM\perp MD\right).\)

\(\Rightarrow\widehat{AND}=90^o.\Rightarrow AC\perp ND.\left(2\right)\)

Từ (1); (2) \(\Rightarrow N;D;K\) thẳng hàng.

a: Xét ΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMAB=ΔMDC

=>\(\widehat{MAB}=\widehat{MDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CD

b: Xét ΔEMB vuông tại E và ΔFMC vuông tại F có

MB=MC

\(\widehat{EMB}=\widehat{FMC}\)(hai góc đối đỉnh)

Do đó: ΔEMB=ΔFMC

=>EM=FM

=>M là trung điểm của EF

1 tháng 2 2018

a) Xét tam giác AMB và tam giác DMC có:

BM = CM (gt)

AM =DM (gt)

\(\widehat{AMB}=\widehat{DMC}\)  (Hai góc đối đỉnh)

\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)

b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)

Chúng lại ở vị trí so le trong nên AB //CD.

c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.

Suy ra MA = ME

Lại có MA = MD nên ME = MD.

d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.

Suy ra ED // BC

Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.

Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)

6 tháng 12 2021

NGU

15 tháng 5 2021

undefined

14 tháng 4 2022

đoạn cm tam giác ade vuông bạn dùng tính chất j thế nói mik đc ko

9 tháng 8 2017

. A B C M D E I 1 1 2 2 2 1 2

\(Xét\)\(\Delta AMB\)\(\Delta DMC\)có:

\(AM=MC\)(M là trung điểm của AC)

\(\widehat{M}_1=\widehat{M}_2\)(2 góc đối đỉnh)

\(BM=MC\)(gt)

=>\(\Delta AMB=\Delta DMC\left(c-g-c\right)\)

=>\(AB=DC;\widehat{A}_1=\widehat{C}_1\)

Mà 2 góc này ở vị trí so le trong

=>AB//DC

=>\(\widehat{ABE}=\widehat{DCB}\)(2 góc đồng vị)

Xét \(\Delta ABE\)\(\Delta DCB\)có:

\(AB=DC\)

\(\widehat{ABE}=\widehat{DCB}\)

\(EB=BC\)

=>\(\Delta ABE=\Delta DCB\left(c-g-c\right)\)

=>\(AE=BD;\widehat{AEB}=\widehat{DBC}\)

Mà 2 góc này ở vị trí đồng vị

=>AE//BD

Xét \(\Delta AIE\)\(\Delta BID\)có:

\(\widehat{A}_2=\widehat{B}_2\)(AE//BD)

\(AE=DC\)

\(\widehat{AEI}=\widehat{BDI}\)(AE//BD)

=>\(\Delta AIE=\Delta BID\left(g-c-g\right)\)

=>\(AI=BI\)

Vậy AI=IB