Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta ABC\)và \(\Delta MDC\)có:
\(\widehat{C}\) chung
\(\widehat{CAB}=\widehat{CMD}=90^0\)
suy ra: \(\Delta ABC~\Delta MDC\)(g.g)
b) Xét \(\Delta BMI\)và \(\Delta BAC\)có:
\(\widehat{B}\)chung
\(\widehat{BMI}=\widehat{BAC}=90^0\)
suy ra: \(\Delta BMI~\Delta BAC\) (g.g)
\(\Rightarrow\)\(\frac{BI}{BC}=\frac{BM}{BA}\)
\(\Rightarrow\)\(BI.BA=BC.BM\)
c) \(\frac{BI}{BC}=\frac{BM}{BA}\) (câu b) \(\Rightarrow\)\(\frac{BI}{BM}=\frac{BC}{BA}\)
Xét \(\Delta BIC\)và \(\Delta BMA\)có:
\(\widehat{B}\)chung
\(\frac{BI}{BM}=\frac{BC}{BA}\) (cmt)
suy ra: \(\Delta BIC~\Delta BMA\) (g.g)
\(\Rightarrow\) \(\widehat{ICB}=\widehat{BAM}\) (1)
c/m: \(\Delta CAI~\Delta BKI\) (g.g) \(\Rightarrow\)\(\frac{IA}{IK}=\frac{IC}{IB}\) \(\Rightarrow\)\(\frac{IA}{IC}=\frac{IK}{IB}\)
Xét \(\Delta IAK\)và \(\Delta ICB\)có:
\(\widehat{AIK}=\widehat{CIB}\) (dd)
\(\frac{IA}{IC}=\frac{IK}{IB}\) (cmt)
suy ra: \(\Delta IAK~\Delta ICB\)(g.g)
\(\Rightarrow\)\(\widehat{IAK}=\widehat{ICB}\) (2)
Từ (1) và (2) suy ra: \(\widehat{IAK}=\widehat{BAM}\)
hay AB là phân giác của \(\widehat{MAK}\)
d) \(AM\)là phân giác \(\widehat{CAB}\) \(\Rightarrow\)\(\widehat{MAB}=45^0\)
mà \(\widehat{MAB}=\widehat{ICB}\) (câu c)
\(\Rightarrow\)\(\widehat{ICB}=45^0\)
\(\Delta CKB\)vuông tại K có \(\widehat{KCB}=45^0\)
\(\Rightarrow\)\(\widehat{CBK}=45^0\)
\(\Delta MBD\) vuông tại M có \(\widehat{MBD}=45^0\)
\(\Rightarrow\)\(\widehat{MDB}=45^0\)
hay \(\Delta MBD\)vuông cân tại M
\(\Rightarrow\)\(MB=MD\)
\(\Delta ABC\) có AM là phân giác
\(\Rightarrow\)\(\frac{MB}{AB}=\frac{MC}{AC}\)
ÁP dụng định ly Pytago vào tam giác vuông ABC ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow\)\(BC=10\)
ÁP dụng tính chất dãy tỉ số = nhau ta có:
\(\frac{MB}{AB}=\frac{MC}{AC}=\frac{MB+MC}{AB+AC}=\frac{5}{7}\)
suy ra: \(\frac{MB}{AB}=\frac{5}{7}\) \(\Rightarrow\)\(MB=\frac{40}{7}\)
mà \(MB=MD\) (cmt)
\(\Rightarrow\)\(MD=\frac{40}{7}\)
Vậy \(S_{CBD}=\frac{1}{2}.CB.DM=\frac{1}{2}.10.\frac{40}{7}=\frac{200}{7}\)
\(S_{ABC}=\frac{1}{2}.AB.AC=\frac{1}{2}.8.6=24\)
\(\Delta ABC\) có AM là phân giác
\(\Rightarrow\)\(\frac{S_{CMA}}{S_{BMA}}=\frac{AC}{AB}=\frac{3}{4}\)
\(\Rightarrow\)\(\frac{S_{CMA}}{3}=\frac{S_{BMA}}{4}=\frac{S_{CMA}+S_{BMA}}{3+4}=\frac{24}{7}\)
\(\Rightarrow\)\(S_{CMA}=\frac{72}{7}\)
Vậy \(S_{AMBD}=S_{CBD}-S_{CMA}=\frac{200}{7}-\frac{72}{7}=\frac{128}{7}\)
C A M B K D I
a) xét \(\Delta ABC\) và \(\Delta MDC\) có
\(\widehat{ACB}=\widehat{MCD}\) ( góc chung)
\(\widehat{CAB}=\widehat{CMD}=90^0\) ( giả thiết )
\(\Rightarrow\Delta ABC\infty\Delta MDC\) \(\left(g.g\right)\)
b) xét \(\Delta BIM\) và \(\Delta BCA\) có
\(\widehat{IBM}=\widehat{CBA}\) ( góc chung )
\(\widehat{BMI}=\widehat{BAC}=90^0\)
\(\Rightarrow\Delta BIM\infty\Delta BCA\left(g.g\right)\)
\(\Rightarrow\frac{BI}{BM}=\frac{BC}{BA}\)
\(\Rightarrow BI.BA=BM.BC\)
P/S tạm thời 2 câu này trước đi đã
a/Xét \(\Delta AID\&\Delta AIE\) có:
\(\widehat{AID}=\widehat{AIE}=90,\widehat{DAI}=\widehat{EAI}\)
Chung AI
Suy ra: \(\Delta AID=\Delta AIE\left(g-c-g\right)\)
\(\Rightarrow\left\{{}\begin{matrix}ID=IE\\\widehat{ADI}=\widehat{AEI}\left(1\right)\end{matrix}\right.\)
Từ (1)\(\Rightarrow\widehat{BDI}=\widehat{IEC}\)
Tứ giác BDEC có: \(2\widehat{IEC}+\widehat{ABC}+\widehat{ACB}=360\left(2\right)\)
Lại có: BI,IC là ph/giác nên:
\(\widehat{BIC}+\widehat{IBC}+\widehat{ICB}=180\Leftrightarrow2\widehat{BIC}+\widehat{ABC}+\widehat{ACB}=360\left(3\right)\)
Từ (2) và (3) suy ra \(\widehat{IEC}=\widehat{BIC}\)
Mà \(\widehat{ECI}=\widehat{ICB}\Rightarrow\widehat{EIC}=\widehat{IBC}=\widehat{DBI}\) ( tổng 3 góc của tgiac)
Xét \(\Delta DBI\&\Delta EIC\) có:
\(\widehat{EIC}=\widehat{DBI}\)(CMT)
\(\widehat{BDI}=\widehat{IEC}\left(CMT\right)\)
Suy ra : \(\Delta DBI\sim\Delta EIC\left(g-g\right)\)
\(\Rightarrow\frac{BD}{ID}=\frac{IE}{CE}\Rightarrow BD.CE=ID.IE=ID^2=IE^2\left(ID=IE\right)\)
b/Xét \(\Delta DBI\&\Delta IBC\) có:
\(\widehat{DBI}=\widehat{IBC}\)
\(\widehat{BDI}=\widehat{IEC}=\widehat{BIC}\)
Suy ra: \(\Delta DBI\sim\Delta IBC\Rightarrow\frac{DB}{IB}=\frac{IB}{BC}\)
\(\Rightarrow IB^2=BD.BC\)
c/CM tương tự ta cũng có: \(IC^2=CE.BC\)
Vậy \(2IB.IC=2\sqrt{BD.BC}.\sqrt{CE.BC}=2.\sqrt{ID^2}.\sqrt{BC^2}=2.ID.BC=DE.BC\)
cảm ơn bn nha !!!