Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ý 1 câu a )
có ED vuông góc BC ; AH vuông góc BC => ED//AH => tam giác CDE đồng dạng vs tam giác CHA ( talet) (1)
xét tam giác CHA và tam giác CAB có CHA=CAB=90 độ ; C chung => tam giác CHA đồng dạng vs tam giác CAB ( gg) (2)
từ (1) và (2) =>tam giác CDE đồng dạng tam giác CAB ( cùng đồng dạng tam giác CHA )
có tam giác CDE đồng dạng tam giác CAB (cmt) => \(\frac{CE}{CB}=\frac{CD}{CA}\)
xét tam giác BAC và tam giác ADC có góc C chung và \(\frac{CE}{BC}=\frac{CD}{AC}\left(CMT\right)\) => tam giác BAC đồng dạng vs tam giác ADC ( trường hợp c-g-c) , mấy câu kia quên mịa nó r -.-
a, HS tự làm
b, Chú ý hai đường phân giác trong và ngoài tại một đỉnh vuông góc nhau
c, Chú ý BM là phân giác góc ABC. Từ đó tính được số đo các góc của tam giác MAB và suy ra ĐPCM
Chú ý Hai tam giác MAB và ABC đều là các tam giác nửa đều
Từ đó tính được tỉ số đồng dạng là 1/2
a: Xét ΔBEC vuông tạiE và ΔADC vuông tại D có
góc C chung
Do đó ΔBEC đồng dạg với ΔADC
b: Ta có: ΔBEC đồng dạng với ΔADC
nên CB/CA=CE/CD
=>CB/CE=CA/CD
Xét ΔCBA và ΔCED có
CB/CE=CA/CD
góc C chung
Do đó: ΔCBA đồng dạbg với ΔCED
Suy ra: \(l=\dfrac{BA}{ED}=\dfrac{CA}{CD}=1:\cos40^0\simeq1.30\)