\(\varepsilon\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2022

vẽ hình ra nha

ta có:ˆAFEAFE^ là góc ngoài tam giác AFB tại đỉnh F

⇒ˆAFE=ˆFAB+ˆABF⇒AFE^=FAB^+ABF^

TA CÓ: GÓC FAB =20độ

góc ABF= 10 độ do BE là phân giác của góc ABC

⇒ˆAFE=20O+10O=30O⇒AFE^=20O+10O=30O

Ta có: ˆBAF+ˆFAE=ˆBACBAF^+FAE^=BAC^

TA cũng có: ˆBAF=20O(GIẢTHUYET)BAF^=20O(GIẢTHUYET)

ˆBAC=50OBAC^=50O

=> ˆFAE=50O−200=30OFAE^=50O−200=30O

xét tam giác FAE có 2 góc ở đáy cùng bằng 30 độ

=> tam giác FAE cân  tại E

28 tháng 2 2020

Bạn đọc lai đề coi có sai chỗ nào không ạ, mình vẽ hình thì nó không vuông góc

28 tháng 2 2020

C A B E I F

Ta có góc CEB là góc ngoài của tam giác AEB

nên \(\widehat{CEB}=50^{^0}+10^0=60^0\)

góc EFA là góc ngoài của tam giác AFB tại đỉnh F

nên \(\widehat{EFA}=20^{0^{ }}+10^{0^{ }}=30^0\)

suy ra góc EAF = góc EFA = 300

suy ta tam giác EAF cân tại E, mà I là trung điểm của AF

suy ra EI vuông góc với AF tại I

suy ra góc AEK= góc KEB=60 độ

Xét tam giác EBK và tam giác EBC có

BE chung; góc AEK= góc KEB (CMT), góc CBE=góc KBC (GT)

suy ra tam giác EBK = tam giác EBC (g.c.g)

suy ra BK=BC

suy ra tam giác BCK cân tại B

suy ra góc KCB = (180độ - góc CBK ) :2 = 80 độ

Xét tam giác BCH có góc BHC= 180 độ - (góc BCH + góc CBH) = 90 độ

vậy BE vuông góc với CK tại H

18 tháng 3 2020

pkb ;cni;poghipcghipk

28 tháng 8 2020

Bài 1 :                                                             Bài giải

A B C H D F E

Bài 2 :                                                           Bài giải

A C B D E I F

Bài 3 :                                                     Bài giải

A B C D E 1 2 H I

Xét 2 tam giác \(\Delta ABI\text{ và }\Delta EBI\) có : 

\(BA=BE\) ( gt )

\(BD\) : cạnh chung

\(\widehat{B_1}=\widehat{B_2}\) ( BD là đường phân giác của \(\widehat{B}\) )

\(\Rightarrow\text{ }\Delta ABD=\Delta EBD\text{ }\left(c.g.c\right)\)

\(\Rightarrow\text{ }AD=DE\text{ }\left(2\text{ cạnh tương ứng }\right)\)

....

Tự làm tiếp nha ! Mình bận rồi !

a: Xét ΔBAD và ΔBED có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

=>DA=DE
=>D nằm trên đường trung trực của AE(1)

Ta có: BA=BE

=>B nằm trên đường trung trực của AE(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE

b: Sửa đề: AF=EC

Ta có: ΔBAD=ΔBED

=>\(\widehat{BAD}=\widehat{BED}\)

mà \(\widehat{BAD}=90^0\)

nên \(\widehat{BED}=90^0\)

=>DE\(\perp\)BC

Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

Do đó;ΔDAF=ΔDEC

=>AF=EC

c: Sửa đề: CM AE//CF

Xét ΔBFC có \(\dfrac{BA}{AF}=\dfrac{BE}{EC}\)

nên AE//CF
d: Sửa đề: I là trung điểm của FC

Ta có: IF=IC

=>I nằm trên đường trung trực của CF(3)

Ta có: DF=DC(ΔDAF=ΔDEC)

=>D nằm trên đường trung trực của CF(4)

ta có: BA+AF=BF

BE+EC=BC

mà BA=BE

và AF=EC

nên BF=BC

=>B nằm trên đường trung trực của CF(5)

Từ (3),(4),(5) suy ra B,D,I thẳng hàng

23 tháng 1 2024

Help me