Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
BK,CI là đường cao
BK cắt CI tại H
=>H là trực tâm
=>AH vuông góc BC
b: góc HBC+góc HCB
=90 độ-góc ABC+90 độ-góc ACB
=180 độ-góc ABC-góc ACB
=góc BAC=70 độ
=>góc BHC=110 độ
a) Áp dụng định lí Pi-ta-go vào tam giác ABC
\(BC^2=AB^2+AC^2=15^2+20^2=625\Rightarrow BC=20\left(cm\right)\)
Tam giác ABC có BD là đuognừ phân giác theo tính chất phân giác ta có:
\(\frac{AD}{DC}=\frac{AB}{BC}\) mà theo tính chất dãy tỉ số bằng nhau ta có: \(\frac{AD}{AD+DC}=\frac{AB}{AB+BC}\Leftrightarrow\frac{AD}{AC}=\frac{AB}{15+225}\Leftrightarrow\frac{AD}{20}=\frac{15}{40}\Rightarrow AD=\frac{20\times15}{40}=7,5\left(cm\right)\).
b) Xét Tam giácCHD và Tam giác CAB có
^H = ^A = 90 độ
^C chung
\(\Rightarrow\) Tam giác CHD đồng dạng với tam giácCAB
\(\Rightarrow\frac{HD}{AB}=\frac{CH}{CA}=\frac{CD}{CB}\Rightarrow CH.CB=CD.CA\).
c) Ta có: CD = AC - AD = 20 - 7,5 = 12,5(cm).
Từ tỉ số đồng dạng ở câu b ta có:
\(CH=\frac{CA.CD}{CB}=\frac{20.12,5}{25}=10\left(cm\right).\)
\(HD=\frac{AB.CH}{CA}=\frac{15.10}{20}=7,5\left(cm\right).\)
Vì tam giác HCD vuông tại H nên \(S_{CHD}=\frac{HC.HD}{2}=\frac{10.7,5}{2}=37,5\left(cm^2\right).\)
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=BC^2-AB^2=13^2-12^2=169-144=25\)
=>\(AC=\sqrt{25}=5\left(cm\right)\)
b: XétΔBAC có BD là phân giác
nên \(\dfrac{AD}{BA}=\dfrac{CD}{BC}\)
=>\(\dfrac{AD}{12}=\dfrac{CD}{13}\)
D nằm giữa A và C
=>AD+DC=AC
=>AD+DC=5(cm)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{12}=\dfrac{CD}{13}=\dfrac{AD+CD}{12+13}=\dfrac{5}{25}=0,2\)
=>\(AD=2\cdot12=2,4\left(cm\right);CD=2\cdot13=2,6\left(cm\right)\)
c: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
=>DA=DH
mà DA=2,4(cm)
nên DH=2,4(cm)
a) BD=45/7 CD=60/7 DE36/7
b) ADB=162/7 BCD k có vì 3 điểm này thẳng hàng
a/Xét 2 tg ABD và tg EBD ,ta có : A^=E^ = 90*
BD chung
Góc ABD = góc EBD (gt)
=> tg ABD = tg EBD (ch- gn)
=>BA=BE
b/Vì BA=BE suy ra tg ABE cân tại B.
c/
xet tg ABD va tgEBD co
BD chung
goc ABD =goc DBE
2tam giac = nhau theo TH canh huyen goc nhon
=> BA= BE
=> tg BAE can
ma goc B= 60
=> tg BAD deu
c