K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2018

Ta thấy ngay theo quan hệ đường vuông góc, đường xiên ta có: 
BM > BE;CM > CF
Vậy nên BE + CF < BM + MC = BC

dễ ha

:3

19 tháng 3 2018

Ta thấy ngay theo quan hệ đường vuông góc, đường xiên ta có:

\(BM>BE;CM>CF\)

Vậy nên \(BE+CF< BM+MC=BC\)

16 tháng 12 2021

a: Xét ΔABM và ΔACN có 

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

Bài 1:Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M; trên tia đối của tia CBlấy điểm N sao cho MB = CN. Từ B hạBE AM ( E AM) ⊥ , từ C hạCF AN ( F AN) ⊥ Chứng minh rằng:a/ Tam giác AMN cân b/ BE = CF c/  BME = CNFBài 2: Cho tam giác ABC cân tại A, đường thẳng vuông góc với AB tại B cắt đườngthẳng vuông góc với AC tại C ở D. Chứng minh rằng AD là tia phân giác của góc BACBài 3:...
Đọc tiếp

Bài 1:
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M; trên tia đối của tia CB
lấy điểm N sao cho MB = CN. Từ B hạ

BE AM ( E AM) ⊥ 

, từ C hạ

CF AN ( F AN) ⊥ 

Chứng minh rằng:
a/ Tam giác AMN cân b/ BE = CF c/

  BME = CNF
Bài 2: Cho tam giác ABC cân tại A, đường thẳng vuông góc với AB tại B cắt đường
thẳng vuông góc với AC tại C ở D. Chứng minh rằng AD là tia phân giác của góc BAC
Bài 3: Cho tam giác ABC vuông cân tại A. Qua A kẻ đường thẳng d ( d không cát đoạn
thẳng BC). Từ B hạ

BE d ( E d) ⊥ 

, từ C hạ

CF d ( F d) ⊥ 

. So sánh: BE + CF và FE?
Bài 4: Cho tam giác ABC vuông cân tại A, kẻ AH vuông góc với BC ( H thuộc BC). Từ
H kẻ
HM AC ⊥

và trên tia HM lấy điểm E sao cho HM = EM. Kẻ

HN AB ⊥

và trên tia

HN lấy điểm D sao cho NH = ND. Chứng minh rằng:
a/ Ba điểm D; A; E thẳng hàng
b/ BD // CE
c/ BC = BD + CE
Bài 5: Cho tam giác ABC vuông cân tại A, D là trung điểm của AC. Từ A kẻ đường
thẳng vuông góc với BD, cắt BC tại E. Chứng minh rằng: AE = 2DE.

0
26 tháng 2 2015

a/ Xét tam giác BEM và tam giác CMF có:

góc BEM = góc CFM = 900

BM = MC (M là trung điểm của BC)

góc BME = góc CMF (đối đỉnh)

Do đó:  tam giác BEM = tam giác CMF (cạnh huyền - góc nhọn)

Vậy: tam giác BEM = tam giác CMF.

b/ Ta có:

BE vuông góc với AM, CF vuông góc với AM => BE// CF

Vậy: BE//CF

c/ Ta có:

tam giác BEM = tam giác CMF (cmt) =>ME = MF

=> M là trung điểm của EF 

Vậy: M là trung điểm của EF

(mấy kí hiệu bạn tự viết nha)

 

 

18 tháng 12 2014

kệ nó sựa lại đi :))