K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: ΔABC cân tại A

mà AD là đường phân giác

nên AD là đường trung tuyến

Xét tứ giác ABEC có 

D là trung điểm của BC

D là trung điểm của AE

Do đó: ABEC là hình bình hành

Suy ra: AB//CE

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

=>DA=DE

b: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

AF=EC

=>ΔDAF=ΔDEC

=>góc ADF=góc EDC

=>góc ADF+góc ADE=180 độ

=>E,D,F thẳng hàng

16 tháng 1 2019

a,Xét ABM và ACM

AB=AC , AM chung , BM=MC(Do M là trung điểm của BC)

ABM = ACM

BAM = CAM                                                               (1)

Mà AM nằm giữa AB và AC ( Do M nằm giữa B và C) (2)

Từ (1) và (2)

AM là tia phân giác của BAC

16 tháng 1 2019

b,Xét BNC và DNC

NC chung , CB = CD 

Góc BCN = DCN

Tam giác:BNC = DNC

Góc BNC = DCN 

Mà BNC + DCN = 180

BNC = 90

CN vuông góc với BD

14 tháng 12 2021

giúp mình với mọi người ơi

 

14 tháng 12 2021

làm ơn ạ 

 

29 tháng 12 2021

A B C D E F

a/ Xét \(\Delta ABD\)và \(\Delta EBD\)

BA=BE (gt); BD chung

\(\widehat{ABD}=\widehat{EBD}\)(gt)

\(\Rightarrow\Delta ABD=\Delta EBD\left(c.g.c\right)\)

b/

\(\Delta ABD=\Delta EBD\left(cmt\right)\Rightarrow\widehat{BAD}=\widehat{BED}=90^o\Rightarrow DE\perp BC\)

c/

Ta có

BE=BA (gt); AF=CE (gt)

=> BE+CE=BA+AF => BC=BF => tg BCF cân tại B

Mà BD là phân giác \(\widehat{ABC}\)

\(\Rightarrow BD\perp CF\) (trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao)

Mà \(CA\perp BF\)

=> D là trực tâm của \(\Delta BCF\Rightarrow FD\perp BC\) mà \(DE\perp BC\) => FD trùng DE (từ  1 điểm ngoài đường thẳng chỉ dựng được duy nhất 1 đường thẳng vuông góc với đường thẳng đã cho) => E, D, F thẳng hàng

29 tháng 12 2021

hình vào tcn cho mình thay G là điểm D vì mình nhầm trọng tâm của tam giác

a) Xét tam giác ABD và tam giác EBD có:

AB=BE (gt)

^ABD=^EBD (^ABD là tia phân giác)

BD chung 

=> tam giác ABD = tam giác EBD ( c.g.c ) 

b) Vì ABC là tam giác vuông tại A

=> tam giác ABD là tam giác vuông tại A

Mà: tam giác ABD = tam giác EBD ( c.g.c )  

=> ^BED=^BAD= 90o

=> DE_|_BC (đpcm)

c) Nối F và C lại với nhau

Vì: FA=FB ( gt)

Mà CA_|_FB ( tam giác ABC _|_ tại A)

=> CA là đg trung trực của tam giác ABC

=> CA là đg trung tuyến của tam giác ABC

Mà tia phân giác ABC cắt AC tại D

=> D là trọng tâm của tam giác ABC

=> D,E,F thằng hàng (đpcm)

16 tháng 7 2019
Cho mik hỏi bạn đã giải đc bào này chưa ak nếu bạn giải đc thì bạn cho mik xin cách làm của bài 1 ak Mik cảm ơn

a: Xét ΔBAD và ΔBED có 

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

Suy ra: DA=DE

b: Ta có: ΔBAD=ΔBED

nên \(\widehat{BAD}=\widehat{BED}=90^0\)

c: Xét ΔADF vuông tại A và ΔEDC vuông tại E có 

AD=ED

AF=EC

Do đó: ΔADF=ΔEDC

Suy ra: \(\widehat{ADF}=\widehat{EDC}\)

=>\(\widehat{ADF}+\widehat{ADE}=180^0\)

=>E,F,D thẳng hàng