Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E H M
a) Xét hai tam giác AMB và DMC có:
MA = MD (gt)
\(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh)
MB = MC (do AM là đường trung tuyến)
Vậy: \(\Delta AMB=\Delta DMC\left(c-g-c\right)\)
Suy ra: AB = CD (hai cạnh tương ứng)
Mà AC > AB (gt)
\(\Rightarrow\) AC > AD
\(\Delta DAC\) có AC > AD \(\Rightarrow\widehat{ADC}>\widehat{DAC}\) (quan hệ giũa góc và cạnh đối diện trong tam giác).
b) \(\Delta ABC\) có: AC > AB (gt)
\(\Rightarrow\) HB > HC (quan hệ giữa đường xiên - hình chiếu)
\(\Delta EBC\) có: HC > HB (cmt)
\(\Rightarrow\) EC > EB (quan hệ giữa đường xiên - hình chiếu).
Gọi AI là tia phân giác \(\widehat{A}\)và BD cắt AC tại K
Vì \(\Delta\)ABC cân tại A mà AI là tia phân giác \(\widehat{A}\)
=> AI là đường cao \(\Delta ABC\)
và CH là đường cao \(\Delta ABC\)
mà AI và CH cắt nhau tại D
=> D là trọng tâm
=> BK là đường cao \(\Delta\)ABC
=> BK \(\perp\)AC hay BD \(\perp\)AC (đpcm)