Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.




M A C B N K I 1 2 1 2 3 4 1 2 60 0
Xét \(\Delta ABC\)có:
\(\widehat{ABC}+\widehat{BCA}=180^0-60^0=120^0\)
mÀ \(\widehat{B_1}=\widehat{B_2}\)(TIA pg)
\(\widehat{C_1}=\widehat{C_2}\left(pg\right)\)
\(\Rightarrow\widehat{B_2}+\widehat{C_2}=\frac{1}{2}\left(\widehat{B}+\widehat{C}\right)=60^0\)
\(\Rightarrow\widehat{BIC}=120^0\)
Kẻ IK là pg \(\widehat{BIC}\)
\(\Rightarrow\widehat{I_2}=\widehat{I_3}\left(=60^0\right)\)
T a có: \(\widehat{I_4}=\widehat{I_1}=180^0-\widehat{BIC}=60^0\)
\(\Rightarrow\widehat{I_1}=\widehat{I_2}=\widehat{I_3}=\widehat{I_4}\left(=60^0\right)\)
Xét tam giác BNI=tam giác BKI(g.c.g) có:
BN=BK(2 cạnh t/ư)
Tương tự ta c/m đc tam giác IKC= tam giác IMC(g.c.g)
=>CK=CM(2 cạnh t/ư)
Lại có: BK+KC=BC
mÀ BN=BK;CK=CM
=>BN+MC=BC(đpcm)

a.Ta có:
ˆBID=12ˆBIC=12(180o−ˆBCI−ˆIBC)=12(180o−12ˆBCA−12ˆABC)=12(180o−12(ˆBCA+ˆABC)=12(180o−12(180o−ˆBAC)=60oBID^=12BIC^=12(180o−BCI^−IBC^)=12(180o−12BCA^−12ABC^)=12(180o−12(BCA^+ABC^)=12(180o−12(180o−BAC^)=60o
Lại có :
ˆNIB=ˆIBC+ˆICB
=1/2ˆABC+1/2ˆACB
=1/2(ˆABC+ˆACB)
=1/2(180o−ˆBAC)=60o
NIB^=IBC^+ICB^
=1/2ABC^+1/2ACB^
=1/2(ABC^+ACB^
=1/2(180o−BAC^)=60o
=>ˆNIB=ˆBID
=>ΔNIB=ΔDIB(g.c.g)
=>BN=BD(cmt)
b.Chứng minh tương tự câu a
→CD=CM
→BN+CM=BD+CD=BC→đpcm