K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Từ (1) và (2) suy ra: BM = AB ⇒ ∆ ABM cân tại B

Tam giác cân ABM có BD là đường phân giác nên đồng thời nó cũng là đường cao (tính chất tam giác cân). Vậy BD ⊥ AM

11 tháng 7 2017

a) Từ A kẻ AE//BD cắt đường thẳng CB tại E
=> ^BAE=^DBA=^B/2=60* và ^ABE=60* (kề bù với ^B)
=> ∆ABE đều nên AB=BE=AE=6
Do BD//AE suy ra: BD/AE=CB/CE
mà CE=CB+BE=12+6=18cm
ta có BD/6=12/18 suy ra BD=12.6/18=4 (cm)

b) Xét ∆ABM có AB=BM =6cm (do BM=MC=BC/2)
nên ∆ABM cân tại B mà BD là đường phân giác nên cũng là đường cao
do đó BD vuông góc với AM.

12 tháng 10 2018

a) Ta có:

ˆABD=ˆCBD=ˆABC2=120∘2=60∘ABD^=CBD^=ABC^2=120∘2=60∘

Từ A kẻ đường thẳng song song với BD cắt CD tại E.

Lại có:

ˆBAE=ˆABD=60∘BAE^=ABD^=60∘ (so le trong)

ˆCBD=ˆAEB=60∘CBD^=AEB^=60∘ (đồng vị)

Suy ra tam giác ABE đều

⇒AB=BE=EA=6(cm)(1)⇒AB=BE=EA=6(cm)(1)

Khi đó: CE = BC + BE = 12 + 6 = 18 (cm)

Tam giác ACE có AE // BD nên suy ra:

BCCE=BDAE⇒BD=BC.AECE=12.618=4(cm)

b) Ta có:

MB=MC=12.BC=12.12=6(cm)(2)MB=MC=12.BC=12.12=6(cm)(2)

Từ (1) và (2) suy ra:

BM=AB⇒BM=AB⇒ ∆ABM cân tại B.

Tam giác cân ABM có BD là đường phân giác nên đồng thời nó cũng là đường cao (tính chất tam giác cân). Vậy BD⊥AM

17 tháng 9 2018

a) Ta có: 

ˆABD=ˆCBD=\(\frac{\widehat{ABC}}{2}\)=120: 2=60

Từ A kẻ đường thẳng song song với BD cắt CD tại E.

Lại có:

ˆBAE=ˆABD=60(so le trong)

ˆCBD=ˆAEB=60 (đồng vị)

Suy ra tam giác ABE  đều 

⇒AB=BE=EA=6(cm)(1)

Khi đó: CE = BC + BE = 12 + 6 = 18 (cm)

Tam giác ACE có AE // BD nên suy ra:

\(\frac{BC}{CE}\)=\(\frac{DC}{AE}\)⇒BD=\(\frac{BC.AE}{CE}\)=\(\frac{12.6}{18}\)=4(cm)

b) Ta có: 

MB=MC=\(\frac{1}{2}\).BC=\(\frac{1}{2}\).12=6(cm)(2)

Từ (1) và (2) suy ra:

BM=AB⇒BM=AB⇒ ∆ABM cân tại B.

Tam giác cân ABM có BD là đường phân giác nên đồng thời nó cũng là đường cao (tính chất tam giác cân). Vậy BD⊥AM

tk mik nha

31 tháng 7 2020

C M B E D A

a) Ta có: 

\(\widehat{ABD}=\widehat{CBD}=\frac{\widehat{ABC}}{2}=\frac{120^o}{2}=60^o\)

Từ A kẻ đường thẳng song song với BD cắt CB tại E 

Lại có:

\(\widehat{BAE}=\widehat{ABD}=60^o\) ( so le trong ) 

\(\widehat{CBD}=\widehat{AEB}=60^o\) ( đồng vị )

Suy ra tam giác ABE  đều 

=> AB = BE = EA = 6 ( cm ) (1)

Khi đó: CE = BC + BE = 12 + 6 = 18 ( cm )

Tam giác ACE có AE // BD nên suy ra :

\(\frac{BC}{CE}=\frac{BD}{AE}\)

\(\Rightarrow BD=\frac{BC.AE}{CE}=\frac{12.6}{18}=4\left(cm\right)\)

b) Ta có: 

\(MB=MC=\frac{1}{2}.BC=\frac{1}{2}.12=6\left(cm\right)\left(2\right)\)

Từ (1) và (2) suy ra:

BM = AB => Tam giác ABM cân tại B.

Tam giác cân ABM có BD là đường phân giác nên đồng thời nó cũng là đường cao ( tính chất tam giác cân )

 Vậy \(BD\perp AM\)


 

29 tháng 10 2020

ai giúp tớ với 

29 tháng 10 2020

a) Từ A kẻ AE//BD cắt đường thẳng CB tại E
=> ^BAE=^DBA=^B/2=60* và ^ABE=60* (kề bù với ^B)
=> ∆ABE đều nên AB=BE=AE=6
Do BD//AE suy ra: BD/AE=CB/CE
mà CE=CB+BE=12+6=18cm
ta có BD/6=12/18 suy ra BD=12.6/18=4 (cm)

b) Xét ∆ABM có AB=BM =6cm (do BM=MC=BC/2)
nên ∆ABM cân tại B mà BD là đường phân giác nên cũng là đường cao
do đó BD vuông góc với AM.

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em

14 tháng 7 2019

1)

gọi I là giao điểm của BD và CE

ta có E là trung điểm cua AB nên EB bằng 3 cm

xét △EBI có \(\widehat{I}\)=900 

EB2 = EI2 + BI2 =32=9             (1)

tương tự IC2 + DI2 = 16            (2)

lấy (1) + (2) ta được

EI2+DI2+BI2+IC2=25

⇔ ED2+BC2=25

xét △ABC có E là trung điểm của AB và D là trung điểm của AC

⇒ ED là đường trung bình của tam giác

⇒ 2ED =BC

⇔ ED2=14BC2

⇒ 14BC2+BC2=25

⇔ 54BC2=25

⇔ BC2=20BC2=20

⇔ BC=√20

31 tháng 7 2019

Ta có: \(S_{AHC}=\frac{AH.AC}{2}=96\left(cm^2\right)\Rightarrow AH.AC=192cm\)(1)

\(S_{ABH}=\frac{AH.BH}{2}=54\left(cm^2\right)\Rightarrow AH.BH=108cm\)(2)

Từ (1) và (2) \(\Rightarrow AH.BH.AH.HC=20736\)

Mà: AH2=BH.CH

    => AH2.AH2=BH.CH.AH2

   <=> AH4=20736

    => AH=12cm

    => BH=9cm ; CH=16cm

      Vậy BC=25cm

31 tháng 7 2017

đây hình như là toán lớp 8 nâng cao thỉ phải

31 tháng 7 2017

có lẽ vậy