Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
Do a và b đều không chia hết cho 3 nhưng khi chia cho 3 thì có cùng số dư nên\(\left[{}\begin{matrix}\left\{{}\begin{matrix}a=3n+1\\b=3m+1\end{matrix}\right.\\\left\{{}\begin{matrix}a=3n+2\\b=3m+2\end{matrix}\right.\end{matrix}\right.\)
TH1:\(\left\{{}\begin{matrix}a=3n+1\\b=3m+1\end{matrix}\right.\)
\(\Rightarrow ab-1=\left(3n+1\right)\left(3m+1\right)-1\)
\(\Rightarrow ab-1=9nm+3m+3n+1-1=9nm+3m+3n⋮3\) nên là bội của 3 (đpcm)
TH2:\(\left\{{}\begin{matrix}a=3n+2\\b=3m+2\end{matrix}\right.\)
\(\Rightarrow ab-1=\left(3n+2\right)\left(3m+2\right)-1\)
\(\Rightarrow ab-1=9nm+6m+6n+4-1=9nm+6m+6n+3⋮3\) nên là bội của 3 (đpcm)
Vậy ....
Bài 2:
\(B=\frac{1}{2010.2009}-\frac{1}{2009.2008}-\frac{1}{2008.2007}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(\Rightarrow B=\frac{1}{2010.2009}-\left(\frac{1}{2009.2008}+\frac{1}{2008.2007}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
Đặt A=\(\frac{1}{2009.2008}+\frac{1}{2008.2007}+...+\frac{1}{3.2}+\frac{1}{2.1}\)
\(\Rightarrow A=\frac{2009-2008}{2009.2008}+\frac{2008-2007}{2008.2007}+...+\frac{3-2}{3.2}+\frac{2-1}{2.1}\)
\(\Rightarrow A=\frac{2-1}{2.1}+\frac{3-2}{3.2}+...+\frac{2008-2007}{2008.2007}+\frac{2009-2008}{2009.2008}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2007}-\frac{1}{2008}+\frac{1}{2008}-\frac{1}{2009}\)
\(\Rightarrow A=1-\frac{1}{2009}\)
\(\Rightarrow B=\frac{1}{2010.2009}-A=\frac{1}{2010.2009}-\left(1-\frac{1}{2009}\right)\)
\(\Rightarrow B=\frac{1}{2010.2009}+\frac{1}{2009}-1=\frac{2011}{2010.2009}-1\)
Ta có: \(\widehat{A}=\frac{q}{3}\widehat{C}\).
Xét tam giác ABC có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
=> \(\frac{q}{3}\widehat{C}+80^o+\widehat{C}=180^o\)
=> \(\frac{q}{3}\widehat{C}+\widehat{C}=180^o-80^o=100^o\)
=> \(\widehat{C}\left(q+3\right)=300^o\)
=> \(\widehat{C}=\frac{300^o}{q+3}\)
=> \(\widehat{A}=\frac{q}{3}.\frac{300^o}{q+3}=\frac{100^oq}{q+3}\)
a) \(BC.AH=AB.AC=6.8=48cm^2\) (bằng 2 lần diện tích ABC).
b) HAB và HAC là 2 tam giác vuông có \(\stackrel\frown{HBA}=\widehat{HAC}\) (cùng phụ với \(\widehat{BCA}\)) nên HAB đồng dạng với HAC. Từ đó \(\dfrac{HB}{AH}=\dfrac{AH}{HC}\Rightarrow HB.HC=AH^2\) (đây là hệ thức lượng quen thuộc trong tam giác vuông: đường cao thuộc cạnh huyền bằng trung bình nhân của hai cạnh góc vuông)
c) Áp dụng Pitago ta có \(BC^2=AB^2+AC^2=6^2+8^2=100\Rightarrow BC=10cm\). Từ đó \(BE=BCV-CE=10-4=6cm=BA\).
Ta có \(BE^2=BA^2=BH.BC\) (chứ không phải là \(BH.CH\) nhé).
d) Không biết là bạn cần tính gì? Nếu là cần tính diện tích của tam giác CED thì có thể làm như sau:
Áp dụng tính chất phân giác có \(\dfrac{CD}{AD}=\dfrac{BC}{BA}=\dfrac{10}{6}=\dfrac{5}{3}\Rightarrow\dfrac{CD}{CA}=\dfrac{CD}{CD+AD}=\dfrac{5}{3+5}=\dfrac{5}{8}\)
\(\dfrac{dt_{CED}}{dt_{CAB}}=\dfrac{CE}{CB}.\dfrac{CD}{CA}=\dfrac{4}{10}.\dfrac{5}{8}=\dfrac{1}{4}\), do đó \(dt_{CED}=\dfrac{1}{4}dt_{ABC}=\dfrac{1}{4}.\dfrac{1}{2}.6.8=6cm^2\)
Tại sao (diện tích tam giác ced / diện tích tam giác cab) =ce/cb*cd/ca
Gọi I là giao điểm của phân giác góc B và C
Xét tam giác HAC vuông tại H và tam giác ABC vuông tại A có góc C chung => góc HAC = góc ABC
Ta có: góc ADC = góc DAB + góc DBA = góc DAH + góc HAC ( vì góc DAB = DAH ; góc HAC=DBA)
=>góc ADC= góc DAH + góc HAC = góc DAC
=> tam giác CAD cân tại C => CA=CD
tam giác CID = tam giác CIA (c.g.c) => IA = ID (1)
CM tương tự, ta có IA = IE (2)
Từ (1) và (2) suy ra IA = IE = ID => I là giao điểm 3 đường trung trực của tam giác ADE
=> đpcm
Bạn tự vẽ hình nghen
Vì AD là phân giác của \(\widehat{BAC}\) nên \(\widehat{BAD}=\widehat{DAC}=30\) độ
Ta có SABD=\(\frac{1}{2}\times AB\times AD\times\sin\widehat{BAD}\) (1)
SADC=\(\frac{1}{2}\times AD\times AC\times\sin\widehat{DAC}\) (2)
SABC=\(\frac{1}{2}\times AB\times AC\times\sin\widehat{BAC}\) (3)
từ (1),(2) và (3) , ta suy ra:\(\frac{1}{2}AD\times\left(AB+AC\right)\times\sin30=AB\times AC\times\sin60\)
\(\Rightarrow AD\times\frac{1}{2}\times12\sqrt{3}=96\times\frac{\sqrt{3}}{2}\)\(\Rightarrow AD=8\)
Vậy AD=8(đvd)
ta có
\(\widehat{A}+\widehat{B}+\widehat{C}=180\)\(\Rightarrow\widehat{B}+\widehat{C}=180-\widehat{A}\)
Mà BI và CI là tia phân giác của goc B và góc C
\(\widehat{IBC}+\widehat{ICB}=\frac{\widehat{B}+\widehat{C}}{2}=\frac{180-\widehat{A}}{2}=\frac{180-\alpha}{2}\)
lại có
\(\widehat{BIC}+\widehat{ICB}+\widehat{BIC}=180\Rightarrow\widehat{BIC}=180-\left(\widehat{BIC}+\widehat{ICB}\right)\Rightarrow\widehat{BIC}=180-\frac{180-\alpha}{2}=\frac{180+\alpha}{2}\)