Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C1 :
Hình : tự vẽ
a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C
mà CI vuông góc vs AB => CI là đường cao của tam giác ABC
=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )
=> IA=IB (đpcm)
C1 :
b) Có IA=IB ( cm phần a )
mà IA+IB = AB
IA + IA = 12 (cm)
=> IA = \(\frac{12}{2}=6\left(cm\right)\)
Xét tam giác vuông CIA có : CI2 + IA2 = CA2 ( Đ/l Py-ta -go )
CI2 + 62 = 102
CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}=8\left(cm\right)\)
Vậy CI ( hay IC ) = 8cm
Các bạn giúp mik với
Câu A và B mik ra rồi
CHỉ cần câu C thôi
Gọi H là giao điểm của NC và BM
Vẽ HK là phân giác BHC => BHK = CHK = BHC/2
Có: A + ABC + ACB = 180o
=> 60o + ABC + ACB = 180o
=> ABC + ACB = 180o - 60o = 120o
=> ABC/2 + ACB/2 = 60o
Mà NBH = HBK = ABC/2; KCH = MCH = ACB/2
Nên HBK + HCK = 60o
=> BHC = 180o - (HBK + HCK) = 180o - 60o = 120o
=> BHK = KHC = BHC/2 = 60o
Có: BHN + BHC = 180o ( kề bù)
=> BHN + 120o = 180o
=> BHN = 180o - 120o = 60o
Xét t/g BHK và t/g BHN có:
BHK = BHN = 60o (cmt)
BH là cạnh chung
NBH = KBH (gt)
Do đó, t/g BHK = t/g BHN (g.c.g)
=> BK = BN (2 cạnh tương ứng) (1)
Tương tự như vậy ta cũng có: t/g KHC = t/g MHC (g.c.g)
=> KC = MC (2 cạnh tương ứng) (2)
Từ (1) và (2) => BN + MC = BK + KC = BC (đpcm)
a: Xét ΔBDM vuông tại D và ΔBEM vuông tại E có
BM chung
\(\widehat{DBM}=\widehat{EBM}\)
Do đó: ΔBDM=ΔBEM
b: \(\widehat{DME}=360^0-90^0-90^0-70^0=110^0\)
-Gọi I là giao điểm của BM và CN.
-Kẻ tia ID là tia phân giác của góc BIC.
ngu