Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn ấn vào đúng 0 sẽ ra đáp án mình giải
mình làm bài này rồi
Gt: ABC có 3 góc nhọn
Phía ngoài ABC các đều ABD; ACE. CD giao BE tại k
Kl: a/ Chứng minh BE = CD
b/ Góc BKC = ?
c/ Chứng minh KA + KB + KC = 1/2. (BE + CD)
Mk chỉ có thể làm cho bạn 1/4 điểm số của bài này thui!
Câu hỏi của Phạm Thùy Dung - Toán lớp 7 - Học toán với OnlineMath
A B C D E J I M N
a) Ta có góc DAC=60o+góc BAC= góc BAE
Xét tam giác DAC và tam giác BAE có:
DA=BA
góc DAC=góc BAC
AC=AE
Nên tam giác ADC= tam giác ABE (c.g.c)
b) J thuộc DC sao cho DJ=BI
Xét tam giác ADJ và tam giác ABI có:
AD=AB
góc ADJ=góc ABI (vì tam giác ADC= tam giác ABE)
DJ=BI
Nên tam giác ADJ= tam giác ABI (c.g.c)
Suy ra AJ=AI (2 cạnh tương ứng)
Mà góc JAI= góc JAB+ góc BAI = góc JAB+ góc DAJ=60o
Nên tam giác AIJ đều nên góc =60o
Lại có tam giác ADJ= tam giác ABI:
Nên góc AIB=góc AJD=180o - góc AJI=120o
=> góc BID = góc AIB- góc AID =60o
c, Théo câu a ta có BE=CD do đó DM=BN
Lại có tam giác DAC = tam giác BAE nên góc ABN= góc ADM
Xét tam giác ABN và tam giác ADM có:
AB=AD
góc ABN= góc ADM
BN=DM
=> tam giác ABN = tam giác ADM => AN=AM; góc DAM= góc BAN
=> góc DAM - góc BAM = góc BAN- góc BAM = AM=AN; góc MAN= góc DAB =60o
=> tam giác AMN là tam giác đều
d, Ta có:
góc AIE= 180o - góc AIB =180o - góc AID - góc BID =1800-600-600
= 60^o = AID
=> đpcm