K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2018

Xét \(\Delta DBE\)\(\Delta DAC\), có:

\(\widehat{BDE}=\widehat{ADC}\) (2 góc đối đỉnh)

\(\widehat{DBE}=\widehat{DAC}\) (=600)

=>\(\Delta DBE\infty\Delta DAC\)

=>\(\dfrac{BD}{AD}=\dfrac{DE}{DC}\)

=>\(\dfrac{BD}{DE}=\dfrac{AD}{DC}\)

Xét \(\Delta DBA\)\(\Delta DEC\),có:

\(\widehat{BDA}=\widehat{EDC}\) (2 góc đối đỉnh)

\(\dfrac{BD}{DE}=\dfrac{AD}{DC}\) (CMT)

=>\(\Delta DBA\infty\Delta DEC\)

=>\(\widehat{DAB}=\widehat{DCE}\)

=>\(\widehat{DCE}=60^0\)

hay \(\widehat{ECB}\) =600

Mà ^EBC=600

=>^BEC=600

=>\(\Delta EBC\) đều

Vậy \(\Delta EBC\) đều

19 tháng 3 2018

kho vcll

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

góc BAE chung

Do đó: ΔAEB\(\sim\)ΔAFC

SUy ra:AE/AF=AB/AC

hay \(AE\cdot AC=AB\cdot AF\)

b: Xét ΔBDH vuông tại D và ΔBEC vuông tại E có

góc EBC chung

Do đó; ΔDBH\(\sim\)ΔEBC

SUy ra: BD/BE=BH/BC

hay \(BD\cdot BC=BH\cdot BE\)

c: Xét ΔHFA vuông tại F và ΔHDC vuông tại D có

\(\widehat{AHF}=\widehat{CHD}\)

Do đó: ΔHFA\(\sim\)ΔHDC

Suy ra: HF/HD=HA/HC

hay \(HF\cdot HC=HD\cdot HA\left(1\right)\)

Xét ΔHFB vuông tại F và ΔHEC vuông tạiE có

\(\widehat{FHB}=\widehat{EHC}\)

Do đó: ΔHFB\(\sim\)ΔHEC
Suy ra: HF/HE=HB/HC

hay \(HF\cdot HC=HB\cdot HE\left(2\right)\)

Từ (1) và (2) suy ra \(HA\cdot HD=HB\cdot HE=HC\cdot HF\)

8 tháng 5 2017

Đoạn thẳng f: Đoạn thẳng [A, C] Đoạn thẳng h: Đoạn thẳng [B, C] Đoạn thẳng i: Đoạn thẳng [B, A] Đoạn thẳng l: Đoạn thẳng [A, M] Đoạn thẳng n: Đoạn thẳng [B, D] Đoạn thẳng p: Đoạn thẳng [C, E] Đoạn thẳng q: Đoạn thẳng [D, E] Đoạn thẳng r: Đoạn thẳng [D, M] Đoạn thẳng s: Đoạn thẳng [M, E] Đoạn thẳng a: Đoạn thẳng [A, H] A = (-0.88, 1.82) A = (-0.88, 1.82) A = (-0.88, 1.82) C = (8.6, 1.86) C = (8.6, 1.86) C = (8.6, 1.86) Điểm B: Điểm trên g Điểm B: Điểm trên g Điểm B: Điểm trên g Điểm M: Điểm trên h Điểm M: Điểm trên h Điểm M: Điểm trên h Điểm D: Giao điểm của j, m Điểm D: Giao điểm của j, m Điểm D: Giao điểm của j, m Điểm E: Giao điểm của k, m Điểm E: Giao điểm của k, m Điểm E: Giao điểm của k, m Điểm H: Giao điểm của t, h Điểm H: Giao điểm của t, h Điểm H: Giao điểm của t, h

a. Ta thấy \(\widehat{DAB}=\widehat{MAC}\) (Cùng phụ với góc \(\widehat{BAM}\)); \(\widehat{DBA}=\widehat{MCA}\)(Cùng phụ với góc \(\widehat{ABM}\))

Vậy nên \(\Delta CAM\sim\Delta BAD\left(g-g\right)\)

b. Do \(\Delta CAM\sim\Delta BAD\left(cma\right)\Rightarrow\frac{AM}{AD}=\frac{AC}{AB}\Rightarrow\frac{AM}{AC}=\frac{AD}{AB}\)

Mà \(\widehat{DAM}=\widehat{BAC}=90^o\Rightarrow\Delta ADM\sim\Delta ABC\left(c-g-c\right)\)

c. Ta thấy \(\widehat{ABM}=\widehat{ACE}\) (Cùng phụ với góc \(\widehat{ACM}\)); \(\widehat{BAM}=\widehat{CAE}\)(Cùng phụ với góc \(\widehat{MAC}\))

Vậy nên \(\Delta BAM\sim\Delta CAE\left(g-g\right)\Rightarrow\frac{AE}{AM}=\frac{AC}{AB}\Rightarrow\frac{AE}{AC}=\frac{AM}{AB}\)

Từ câu b: \(\frac{AD}{AB}=\frac{AM}{AC}\)và ta vừa cm \(\frac{AE}{AC}=\frac{AM}{AB}\Rightarrow\frac{AD.AE}{AB.AC}=\frac{AM^2}{AC.AB}\Rightarrow AD.AE=AM^2\) 

d. Do \(AD.AE=AM^2;\widehat{DAM}=\widehat{MAE}=90^o\Rightarrow\Delta DAM\sim\Delta MAE\left(c-g-c\right)\)

\(\Rightarrow\widehat{DMA}=\widehat{MEA}\Rightarrow\widehat{DME}=90^o\). Lại có \(\widehat{EDM}=\widehat{ABC}\Rightarrow\Delta ABC\sim\Delta MDE\left(g-g\right)\)

Để  \(\frac{S_{ABC}}{S_{MDE}}=\frac{1}{4}\Rightarrow\) tỉ số đồng dạng \(k=\frac{1}{2}.\)

Gọi AH là đường cao của tam giác ABC, khi đó AM = 2AH \(\Rightarrow\widehat{AMB}=30^o.\)

Vậy M là một điểm thuộc AB sao cho \(\widehat{AMB}=30^o.\)

a: AE/AD=9/6=3/2

AB/AC=8/12=2/3

b: Xét ΔADE và ΔABC có

AD/AB=AE/AC

góc A chung

Do đó:ΔADE đồng dạng với ΔABC

30 tháng 4 2018

d) Tự vẽ hình nhé 

Dễ thấy I là trực tâm => CK là đường cao.

Do AM là phân giác nên góc MAB = góc MAC = 45 

mà góc MAB = góc ICB 

suy ra góc KBC = 45 

=> góc BDM = 45 

=> MB = MD (do tam giác MBD vuông cân) 

Do AM là phân giác nên ta có tỷ lệ sau \(\frac{MC}{6}=\frac{MB}{8}\)

Theo Pythagoras => (MC + MB)^2 = AC^2 + AB^2 = 100 

Áp dụng tính chất dãy tỉ số bằng nhau , suy ra 

\(\frac{MC}{6}=\frac{MB}{8}=\frac{MC+MB}{14}=\frac{10}{14}=\frac{5}{7}\)

=> \(\hept{\begin{cases}MC=\frac{30}{7}\\MB=\frac{40}{7}\end{cases}}\)

Suy ra \(MD=\frac{40}{7}\)

Suy ra \(S_{BCD}=\frac{1}{2}.MD.BC=\frac{1}{2}.\frac{40}{7}.10=\frac{200}{7}\)

Ta áp dụng Pythgoras vào tam giác CMD để tính CD = 50/7 

Sau đó tinh S(CMA) dựa vào tỷ lệ 

Rồi lấy S(BCD) - S(CMA) là ra S(BMAD)